
Security Assessment

VirtuSwap
CertiK Verified on Sept 14th, 2022

Executive Summary

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

3 Major 2 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 3 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

6 Informational 5 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY VIRTUSWAP

CertiK Verified on Sept 14th, 2022

VirtuSwap

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Trading-AMM

ECOSYSTEM

Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 09/14/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/Virtuswap/v1-core

...View All

COMMITS
cbdeff22e79907490e68746c8bebfb34317b172c

...View All

13
Total Findings

11
Resolved

0
Mitigated

0
Partially Resolved

2
Acknowledged

0
Declined

0
Unresolved

https://github.com/Virtuswap/v1-core
https://github.com/Virtuswap/v1-core/commit/cbdeff22e79907490e68746c8bebfb34317b172c

TABLE OF CONTENTS VIRTUSWAP

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CON-01 : Centralization Related Risks

CON-02 : Missing Override Specifier

CON-03 : Missing Input Validation

CON-06 : Missing Emit Events

CON-07 : Unlocked Compiler Version

PVU-01 : No validation check on `tokenOut` address

PVU-02 : swap functions use `msg.sender` as the contract address for `IvFlashSwapCallback`

RVT-01 : `vRouter` Does Not Guard Against MEV Attacks

RVT-02 : Discussion on `vRouter` contract `vFlashSwapCallback()` function

RVT-03 : Missing Error Messages

RVT-04 : token unspecified in `quote()` input

RVT-05 : Typo in Comment

SEC-01 : Function `_transfer()` should be internal

Optimizations

CON-04 : Improper Usage of `public` and `external` Type

CON-05 : Memory Used over Calldata

RVH-01 : Variables That Could Be Declared as Immutable

SEC-02 : Variables That Could Be Declared as `constant`

Appendix

Disclaimer

TABLE OF CONTENTS VIRTUSWAP

CODEBASE VIRTUSWAP

Repository

https://github.com/Virtuswap/v1-core

Commit

cbdeff22e79907490e68746c8bebfb34317b172c

CODEBASE VIRTUSWAP

https://github.com/Virtuswap/v1-core
https://github.com/Virtuswap/v1-core/commit/cbdeff22e79907490e68746c8bebfb34317b172c

AUDIT SCOPE VIRTUSWAP

29 files audited 3 files with Acknowledged findings 12 files with Resolved findings 14 files without findings

ID File SHA256 Checksum

PVU contracts/vPair.sol
12ff7d6298f2b756c885ba6ff1c193da4f5b491a4549e39cf2bd8afb

97be14ff

VPA contracts/vPairFactory.sol
4fa56eae854512cec61bcc60abe27cc6394155b079812c569b68a

fc4d0978140

RVT contracts/vRouter.sol
6d62973c86894e6bf64fc32199191a07c567b7c54d8c1250dc911

9500bf99ede

MUL contracts/base/multicall.sol
364756d1e1a41b0d233f58ea0e05640a1e6af2d15f378962292dff

0266faf488

IMV contracts/interfaces/IMulticall.sol
05bbba2d7ea2e7465548fc05a39e7ba2bd0c5fcb8e22a13a9907c

714814ef802

IFC
contracts/interfaces/IvFlashSwapC

allback.sol

cac1bf0dc79ea5e01d509aa359a078f21a40e4c706e19cc2ffd333

15ca2b21f6

IVP contracts/interfaces/IvPair.sol
85c5b6fcc11a655f85a240faa678cd5727e280210595dc3f776787

271af051cb

IFV
contracts/interfaces/IvPairFactory.s

ol

95751b65527185f4eb0f9a6bf69718bad6dd89e3c7e0a379949b8

ec83ddb2b77

IVR contracts/interfaces/IvRouter.sol
992ffada03855a09b3fa021757130158a2ecd6f6a8872d0bf871a5

4348b43850

ISD
contracts/interfaces/IvSwapPoolDe

ployer.sol

e10e469831f99a446f0315277562b59fc584e9f6f86ea381d597a5

353f08618f

AVB contracts/libraries/poolAddress.sol
804bccd51cdd5dc7a5a2c91deefee2904fa03af8b921cc3f6ac7e2

5c5e64993c

VSW contracts/libraries/vSwapLibrary.sol
519a6301a10eacc755018bc7d10d176a7ea9499547e73b5b3759

71ca7b85cb03

RVH contracts/exchangeReserves.sol
388883f2517174a1272ba6f4fb8383b3e53f3cf31d2c7bcbe3f43a4

4367f0ce2

TYE contracts/types.sol
912a98f2cb2769fee9c1dc6e764c9be499037c62c28c23e16d685

986d781ecfb

AUDIT SCOPE VIRTUSWAP

ID File SHA256 Checksum

SEC contracts/vSwapERC20.sol
979664996149f507c70158700af3d50000f1d96cde15601799ce1

b17efc6e206

IFS
contracts/interfaces/IvFlashSwapC

allback.sol

e12e98f2fe70091b5b3303060a1593deaccc743cd4ac0d7e987a2

127e8efac42

IPV contracts/interfaces/IvPair.sol
1db84608eb8db7a2513572f79ea9aeebabd06eb83a6c197605fc6

5d51d02c2f3

IPF
contracts/interfaces/IvPairFactory.s

ol

51f9893c06eea4bd2c32d4007c4742c3116e1935edb2f950c0584

81f3512f664

IRV contracts/interfaces/IvRouter.sol
8705d10a74efb65c1903d4d13c1f4a304f6d77fad07bd185a9da6c

37385b1ccb

ISP
contracts/interfaces/IvSwapPoolDe

ployer.sol

29925d7ca180c07c11a325aa3b6147ec2433bcf0acb19182adfc1

c10b5b7699a

PAV contracts/libraries/PoolAddress.sol
e5da5972f8f72a9252acd146c27659e8271d8962fdd66f0fdc3105f

8130d05d6

SLV contracts/libraries/vSwapLibrary.sol
8778a59e2fac00554af8438f873b1f6211c0841a80fbfe438e2b3d3

c73477bb1

RVB contracts/exchangeReserves.sol
66407676e3babb7a66f698f08d56c82ea4e94d5c64ace291325c3

dd1f798d4b2

TYP contracts/types.sol
618f24493b5e7f7c4ed24379323bbb9e7a671a276c57c42453756

c9faf9ab8d0

PVB contracts/vPair.sol
39da31533d4ff541256ee0d05ad29d3f3322b971f81066bf886d83

d4ab13f411

PFV contracts/vPairFactory.sol
c6c9901f5f47b22afce45d6f9d0706a99e95624912814e6f1447db

56d224b872

RVU contracts/vRouter.sol
0e3494778e8f3d178edb099ed758bd9e80ca7e579e34069ac8fb9

2e6960e1048

SER contracts/vSwapERC20.sol
979664996149f507c70158700af3d50000f1d96cde15601799ce1

b17efc6e206

SPD contracts/vSwapPoolDeployer.sol
316e872ef4772079ce74888c99d8986aa7dddb2977c5747a32e8

3960d09b845b

AUDIT SCOPE VIRTUSWAP

APPROACH & METHODS VIRTUSWAP

This report has been prepared for VirtuSwap to discover issues and vulnerabilities in the source code of the VirtuSwap

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS VIRTUSWAP

FINDINGS VIRTUSWAP

This report has been prepared to discover issues and vulnerabilities for VirtuSwap. Through this audit, we have uncovered

13 issues ranging from different severity levels. Utilizing Static Analysis techniques to complement rigorous manual code

reviews, we discovered the following findings:

ID Title Category Severity Status

CON-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

CON-02 Missing Override Specifier Compiler Error Minor Resolved

CON-03 Missing Input Validation Volatile Code Minor Resolved

CON-06 Missing Emit Events Coding Style Informational Resolved

CON-07 Unlocked Compiler Version
Language

Specific
Informational Resolved

PVU-01 No Validation Check On tokenOut Address
Logical Issue,

Volatile Code
Major Resolved

PVU-02
Swap Functions Use msg.sender As The

Contract Address For IvFlashSwapCallback

Language

Specific
Informational Acknowledged

RVT-01
vRouter Does Not Guard Against MEV

Attacks
Control Flow Major Resolved

RVT-02
Discussion On vRouter Contract

vFlashSwapCallback() Function
Logical Issue Minor Resolved

RVT-03 Missing Error Messages Coding Style Informational Resolved

RVT-04 Token Unspecified In quote() Input Coding Style Informational Resolved

FINDINGS VIRTUSWAP

13
Total Findings

1
Critical

3
Major

0
Medium

3
Minor

6
Informational

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729867
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660659553854
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660768104447
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573172469
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660747543826
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660584881704
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660749752815
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660583631917
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660755759121
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573172470
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660595037371

ID Title Category Severity Status

RVT-05 Typo In Comment Coding Style Informational Resolved

SEC-01 Function _transfer() Should Be Internal Logical Issue Critical Resolved

FINDINGS VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660751326499
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573172471

CON-01 FINDING DETAILS

Finding Title

Centralization Related Risks

Category Severity Location Status

Centralization /

Privilege
Major

contracts/vPair.sol: 421, 438, 442, 451, 459; contracts/vPa

irFactory.sol: 76; contracts/vRouter.sol: 341
Acknowledged

Description

In the contract vPairFactory the role admin has authority over the functions shown in the diagram below, as well as

authority over privileged functions referenced in the vPair contract. Any compromise to the admin account may allow the

hacker to take advantage of this authority and set the address exchangeReserves to any address. Additionally, in the

contract vPair , this may also allow the hacker to change whitelisted addresses, set the address factory to any address,

and change the value of fee, max reserve ratio and max whitelist count.

Function State VariablesAuthenticated Role

setExchangeReservesAddress exchangeReservesadmin

In the contract vRouter the role owner has authority over the functions shown in the diagram below. Any compromise to

the owner account may allow the hacker to take advantage of this authority and set the address factory to any address.

Function State VariablesAuthenticated Role

changeFactory factoryowner

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

CON-01 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729867

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[VirtuSwap] : "Agreed to postpone until mainnet deployment."

[CertiK] : The client acknowledges the finding and is working to mitigate the risk through multi-signature wallets. At such a

time that all features of the short-term recommendation are followed, the finding will be considered mitigated.

CON-01 VIRTUSWAP

CON-02 FINDING DETAILS

Finding Title

Missing Override Specifier

Category Severity Location Status

Compiler

Error
Minor

contracts/vPair.sol: 40; contracts/vPairFactory.sol: 76, 84; contracts/vRo

uter.sol: 80, 91
Resolved

Description

The contract vPair declares the public state variable reserves and inherites from the interface IvPair , in which a read

function for the variable reserves is declared, but this overriding public state variable reserves is missing override

specifier.

In addition, the function setExchangeReservesAddress() and getInitCodeHash() in the contract vPairFactory and the

function swapToExactNative() and swapReserveToExactNative() in the contract vRouter are also lacking the

override specifier.

Recommendation

We recommend the client add override to the overriding state variable and functions.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

4f3676a58ee085665d74ee7f75b47eff960cb040 and a8c4465105981880c483fddd0f5e5f183ac1ab15. The function

getInitCodeHash is temporary and will be removed after the audit.

CON-02 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660659553854
https://github.com/Virtuswap/v1-core/commit/4f3676a58ee085665d74ee7f75b47eff960cb040
https://github.com/Virtuswap/v1-core/commit/a8c4465105981880c483fddd0f5e5f183ac1ab15

CON-03 FINDING DETAILS

Finding Title

Missing Input Validation

Category Severity Location Status

Volatile

Code
Minor

contracts/vPair.sol: 102, 104, 147, 149, 229, 231, 439; contracts/vRouter.

sol: 341
Resolved

Description

The following input is missing the check for the non-zero address.

438 function setFactory(address _factory) external onlyFactoryAdmin {

439 factory = _factory;

440 }

341 function changeFactory(address _factory) external override onlyOwner {

342 factory = _factory;

343 }

The following input amountOut is missing the check for value greater than 0 and less than reserve.

101 function swapNative(

102 uint256 amountOut,

146 function swapNativeToReserve(

147 uint256 amountOut,

228 function swapReserveToNative(

229 uint256 amountOut,

The following input to is missing the check that address does not equal to token0 or token1 .

104 address to,

149 address to,

CON-03 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660768104447

231 address to,

Recommendation

We recommend adding the check for the passed-in values to prevent unexpected errors.

Alleviation

[CertiK] : The client heeded the advice and made the changes corresponding to the recommendations listed above in

commit a5b26a44a067eef974370af44b7eed53df0b9e7e.

CON-03 VIRTUSWAP

https://github.com/Virtuswap/v1-core/commit/a5b26a44a067eef974370af44b7eed53df0b9e7e

CON-06 FINDING DETAILS

Finding Title

Missing Emit Events

Category Severity Location Status

Coding

Style
Informational

contracts/vPair.sol: 438, 442, 451, 459; contracts/vPairFactory.sol: 7

6; contracts/vRouter.sol: 341
Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

We recommend emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

1d3bbbcec5c084bdc158b004f1ea1ecc9ae24dbb.

CON-06 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573172469
https://github.com/Virtuswap/v1-core/commit/1d3bbbcec5c084bdc158b004f1ea1ecc9ae24dbb

CON-07 FINDING DETAILS

Finding Title

Unlocked Compiler Version

Category Severity Location Status

Language

Specific
Informational

contracts/base/multicall.sol: 3; contracts/exchangeReserves.sol: 2;

contracts/interfaces/IMulticall.sol: 2; contracts/interfaces/IvFlashSw

apCallback.sol: 1; contracts/interfaces/IvPair.sol: 1; contracts/interf

aces/IvPairFactory.sol: 1; contracts/interfaces/IvRouter.sol: 1; contr

acts/interfaces/IvSwapPoolDeployer.sol: 1; contracts/libraries/pool

Address.sol: 2; contracts/libraries/vSwapLibrary.sol: 1; contracts/ty

pes.sol: 1; contracts/vPair.sol: 1; contracts/vPairFactory.sol: 1; cont

racts/vRouter.sol: 2; contracts/vSwapERC20.sol: 4

Resolved

Description

The contracts listed have an unlocked compiler version. An unlocked compiler version in the source code of the contract

permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode

between compilations due to differing compiler version numbers. This can lead to an ambiguity when debugging, as compiler

specific bugs may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than

a specific one.

Recommendation

We recommend the compiler version is instead locked at the lowest version possible that the contract can be compiled at.

For example, for version v0.8.2 the contract should contain the following line:

pragma solidity 0.8.2;

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

87b54bcd77060c73be257b39208ab26094c4ea73 and a8c4465105981880c483fddd0f5e5f183ac1ab15.

CON-07 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660747543826
https://github.com/Virtuswap/v1-core/commit/87b54bcd77060c73be257b39208ab26094c4ea73
https://github.com/Virtuswap/v1-core/commit/a8c4465105981880c483fddd0f5e5f183ac1ab15

PVU-01 FINDING DETAILS

Finding Title

No Validation Check On tokenOut Address

Category Severity Location Status

Logical Issue, Volatile Code Major contracts/vPair.sol: 101~102 Resolved

Description

The swapNative() function is meant to be used with the two tokens that compose the pair within the vPair instance.

However, any address could be used as input for tokenOut , and, if the pair contract has a balance of that token, the

function will successfully execute. Since this function updates reserve values for token0 and token1 based upon the

amountOut value corresponding to the input tokenOut address, this could cause an incorrect calculation for the token

reserves of the contract, which is subject to exploit.

Recommendation

We recommend the client require that the tokenOut address for swapNative() be the address of either token0 or

token1 .

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

f3501107b07014f0896c944819fbe70642cd5c4b.

PVU-01 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660584881704
https://github.com/Virtuswap/v1-core/commit/f3501107b07014f0896c944819fbe70642cd5c4b

PVU-02 FINDING DETAILS

Finding Title

Swap Functions Use msg.sender As The Contract Address For IvFlashSwapCallback

Category Severity Location Status

Language Specific Informational contracts/vPair.sol: 128~129, 183~184, 263~264 Acknowledged

Description

It is understood that msg.sender is used as the contract address for the interface IvFlashSwapCallback so that, in the

event a call is made to any one of the referenced swap functions through the router contract, the router is the msg.sender

and the function vFlashSwapCallback is called within the router. However, for any user that is not calling through the router

to interact with a pairs contract, the specification of msg.sender for the contract address is limiting. This implementation

requires that anyone choosing to use the flash swap utility must construct a function to call to the pair within the same flash

swap contract, rather than allowing the user to make a call to the pair's swap function either directly or with a separate

contract.

Recommendation

We recommend the client consider modifying the pair contract's swap functions to accommodate a specified address used in

the IvFlashSwapCallback interface, instead of using msg.sender as a default.

Alleviation

[CertiK] : The client acknowledges the finding and opts to make no changes.

[VirtuSwap] : "I intend to continue to use msg.sender as the address to invoke vFlashSwapCallback.

As stated, it may be limiting, but I see it as a safety restriction.

It is the user's responsibility to implement the IvFlashSwapCallback interface when interacting directly with the vPair contract

for a flashswap. In the callback function, he can call other contracts and perform any logic he wants. Different types of errors

may result from keeping it for user decisions.

UniswapV3 also hard-coded msg.sender for swap callbacks."

PVU-02 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660749752815

RVT-01 FINDING DETAILS

Finding Title

vRouter Does Not Guard Against MEV Attacks

Category Severity Location Status

Control Flow Major contracts/vRouter.sol: 80~81, 91 Resolved

Description

The flow of a swap function in a DEX's router contract usually includes:

giving the router approval to the user's token funds first,

the router safe-transferring the tokens from the user to the pair contract, and

the router function calling the pair's swap function immediately after the transfer.

Since the transfer to the pair and the swap function call are made in the same atomic transaction, the function call safely

swaps tokens using the pair contract. In general it is considered dangerous for an externally-owned account (not using the

flash swap callback logic) to interact directly with the pair contract, the primary reason being a user would need to

sequentially transfer tokens to the pair contract and then call the swap function. In the time between these two transactions,

an MEV bot can listen for the call to the swap function and front run the call. Since the successful execution of the swap

function is not dependent upon who first deposits tokens into the contract, the original user will lose anything they contribute

in this instance.

A router's functions for swapping, adding, and removing liquidity should both include a transfer of funds from the user to the

pair contract, and a call to the pair's respective functions. This composition keeps end users safe from MEV bot front-running

attacks. The swap functions in vRouter only includes such logic if a user includes nonempty data in bytes that is used in

the router's vFlashSwapCallback() function to transfer tokens to the pair contract. As constructed, a user may interact with

the router's swap functions in an unsafe manner and lose funds to MEV bot attacks.

Recommendation

We recommend the client add into the cited router functions logic for safely transferring tokens to the pair contract that does

not rely on the use of the vFlashSwapCallback() function.

Alleviation

[CertiK] : The client made changes to allow for users to complete atomic trades without requiring encoded data as input.

Changes were completed in commit cbdeff22e79907490e68746c8bebfb34317b172c.

[VirtuSwap] : Here is a description of our atomic trade flow

RVT-01 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660583631917
https://github.com/Virtuswap/v1-core/commit/cbdeff22e79907490e68746c8bebfb34317b172c

(Off-chain client side) Caller approves contract to spend tokens

Caller invokes the router's Swap functions (swapReserveToExactNative/swapReserveToExactNative)

The equivalent vPair swap function is invoked by the router contract with populated data parameters to invoke

flashswap.

vPair optimistically sends the output funds to the caller in case of ERC20 and to the router in case of WETH.

vPair invokes flash callback to receive funds back, then the router collects funds from the caller (wrap for WETH).

The vPair validates that there are enough funds back.

vRouter unwraps WETH to ETH in case it is needed and settles the transaction.

Changes:

I have removed requirement for caller to provide bytes data

Now the data param is structured internally in vRouter and converted to bytes for vPair.

Instead of copying the token collection from the user into every swap function, it can be unified into a single event and remain

an atomic transaction safe from MEV by keeping the vFlashCallback in the router.

As you stated it is not safe to call the vPair contract directly without a periphery contract to wrap the funds collection.

If an advanced user is directly interacting with the vPair contract, they should be aware of such risks before depositing funds.

Our UI only interacts with the vRouter contract.

RVT-01 VIRTUSWAP

RVT-02 FINDING DETAILS

Finding Title

Discussion On vRouter Contract vFlashSwapCallback() Function

Category Severity Location Status

Logical Issue Minor contracts/vRouter.sol: 52~53 Resolved

Description

The flash swap callback feature of a typical pair contract intentionally uses an input of data in bytes because the use of the

flash swap callback is ambiguous and left to the user to decide how the funds are applied and then paid back. The utility

within the vRouter contract for function vFlashSwapCallback() is well-defined and only serves to pay back the amount of

tokens owed to the pair contract. The logic for transferring tokens from the msg.sender to the pair should be included in the

body of each router swap function. As is, the set up requires that a user encode this information first so it may be included in

the router swap call, allowing the router to assist in paying back the pair contract through the function

vFlashSwapCallback() . A separate finding has already established a need for using safeTransferFrom to handle moving

tokens from the msg.sender to the pair contract within the swap functions of the router. Once that is completed, the

purpose of using the router for flash swap callbacks may no longer be necessary.

Recommendation

We recommend the client consider the information above and decide whether removing the function

vFlashSwapCallback() may fit their intentions for the project with respect to the other changes made to the vRouter

contract.

Alleviation

[CertiK] : The client made changes to allow for users to complete atomic trades without requiring encoded data as input.

Changes were completed in commit cbdeff22e79907490e68746c8bebfb34317b172c.

[VirtuSwap] : Here is a description of the atomic trade flow:

(Off-chain client side) Caller approves contract to spend tokens

Caller invokes the router's Swap functions (swapReserveToExactNative/swapReserveToExactNative)

RVT-02 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660755759121
https://github.com/Virtuswap/v1-core/commit/cbdeff22e79907490e68746c8bebfb34317b172c

The equivalent vPair swap function is invoked by the router contract with populated data parameters to invoke

flashswap.

vPair optimistically sends the output funds to the caller in case of ERC20 and to the router in case of WETH.

vPair invokes flash callback to receive funds back, then the router collects funds from the caller (wrap for WETH).

The vPair validates that there are enough funds back.

vRouter unwraps WETH to ETH in case it is needed and settles the transaction.

Changes:

The requirement for caller to provide bytes data has been removed

Now the data parameter is structured internally in vRouter and converted to bytes for vPair.

Instead of copying the token collection from the user into every swap function, it can be unified into a single event

and remain an atomic transaction safe from MEV by keeping the vFlashCallback in the router.

RVT-02 VIRTUSWAP

RVT-03 FINDING DETAILS

Finding Title

Missing Error Messages

Category Severity Location Status

Coding Style Informational contracts/vRouter.sol: 22 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

6ad371ea413c1ac1626e97e7b8c5a0e7874cd76c.

RVT-03 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573172470
https://github.com/Virtuswap/v1-core/commit/6ad371ea413c1ac1626e97e7b8c5a0e7874cd76c

RVT-04 FINDING DETAILS

Finding Title

Token Unspecified In quote() Input

Category Severity Location Status

Coding Style Informational contracts/vRouter.sol: 279~280 Resolved

Description

Within the function quote() in the vRouter contract, it is not immediately apparent whether the input amount

corresponds to token0 or token1 of the corresponding pair, until viewing the set up for input of the quote() function in

the vSwapLibrary contract. Since this function is user-facing, code readability may be improved by specifying which token

the uint amount corresponds to within the function.

Recommendation

We recommend changing the naming of the uint256 value amount in the quote() function within vRouter so the user

has a clear understanding of what value should be used as input within the function.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

44e3dd2946cf74bc8082b5da897ff21f14cdc0b5.

RVT-04 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660595037371
https://github.com/Virtuswap/v1-core/commit/44e3dd2946cf74bc8082b5da897ff21f14cdc0b5

RVT-05 FINDING DETAILS

Finding Title

Typo In Comment

Category Severity Location Status

Coding Style Informational contracts/vRouter.sol: 69~70 Resolved

Description

In the validation that requiredBackAmount <= data.tokenInMax , the corresponding comment reads as

VSWAP:REQUIRED_AMOUNT_EXECEDS . This comment should read VSWAP:REQUIRED_AMOUNT_EXCEEDS .

Recommendation

We recommend making the change to the comment for better end-user readability.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

c46db0d4dfdd7a65755df5ad57667285d514da6f.

RVT-05 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660751326499
https://github.com/Virtuswap/v1-core/commit/c46db0d4dfdd7a65755df5ad57667285d514da6f

SEC-01 FINDING DETAILS

Finding Title

Function _transfer() Should Be Internal

Category Severity Location Status

Logical Issue Critical contracts/vSwapERC20.sol: 248~273 Resolved

Description

The _transfer function is used to move tokens from a specified sender address to another specified receiver address

without any restriction. It should only be used as an internal utility function by other public functions which do security checks.

The consequence is anyone can call the _transfer() function to move tokens between arbitrary addresses.

Recommendation

We recommend the client update the function visibility from public to internal .

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

4966862d2f8b2d3e055ce8f2ec9b57abc7f4b3f0.

SEC-01 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573172471
https://github.com/Virtuswap/v1-core/commit/4966862d2f8b2d3e055ce8f2ec9b57abc7f4b3f0

OPTIMIZATIONS VIRTUSWAP

ID Title Category Severity Status

CON-04 Improper Usage Of public And external Type Gas Optimization Optimization Resolved

CON-05 Memory Used Over Calldata Gas Optimization Optimization Resolved

RVH-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

SEC-02 Variables That Could Be Declared As constant Gas Optimization Optimization Resolved

OPTIMIZATIONS VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729869
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660585157462
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729871
https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729870

CON-04 FINDING DETAILS

Finding Title

Improper Usage Of public And external Type

Category Severity Location Status

Gas

Optimization
Optimization

contracts/base/multicall.sol: 12; contracts/libraries/poolAddress.s

ol: 34; contracts/vPair.sol: 299, 309, 351, 375, 388; contracts/vRo

uter.sol: 242, 257~267, 267; contracts/vSwapERC20.sol: 108, 14

2, 169, 192, 216

Resolved

Description

public functions that are never called internally by the contract could be declared as external .

external functions which are called internally within the contract should have public visibility instead of using the

this.f() pattern, as this requires a real CALL to be executed, which is more expensive.

Recommendation

We recommend the client use the external attribute for public functions that are never called within the contract, and

public attribute for external functions that are called internally (and externally) within the contract, making a direct call to

the function by the name f() instead of the pattern this.f() .

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

bd23f7ad671a5a63f5a38a648657aba10755b970.

CON-04 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729869
https://github.com/Virtuswap/v1-core/commit/bd23f7ad671a5a63f5a38a648657aba10755b970

CON-05 FINDING DETAILS

Finding Title

Memory Used Over Calldata

Category Severity Location Status

Gas Optimization Optimization contracts/vPair.sol: 105~106; contracts/vRouter.sol: 54~55 Resolved

Description

In the vPair contract, the function swapNative() has an input data of type bytes which is originally stored in

calldata within the the contract inteface. This function is overridden to use memory instead within the contract itself.

In the function vFlashSwapCallback() in vRouter , memory is again used over calldata, even though the

swapNativeToReserve() and swapReserveToNative() functions store data in calldata.

Recommendation

We recommend keeping the use of calldata rather than memory in order to save gas and retain consistency.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

17a6a5a0df34fc35b27de5eeab5b5403e9473b14.

CON-05 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660585157462
https://github.com/Virtuswap/v1-core/commit/17a6a5a0df34fc35b27de5eeab5b5403e9473b14

RVH-01 FINDING DETAILS

Finding Title

Variables That Could Be Declared As Immutable

Category Severity Location Status

Gas Optimization Optimization contracts/exchangeReserves.sol: 10 Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. An advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

0e6138f3b496b5a94d41159c2e7d7be25533ff74.

RVH-01 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729871
https://github.com/Virtuswap/v1-core/commit/0e6138f3b496b5a94d41159c2e7d7be25533ff74

SEC-02 FINDING DETAILS

Finding Title

Variables That Could Be Declared As constant

Category Severity Location Status

Gas Optimization Optimization contracts/vSwapERC20.sol: 45, 46 Resolved

Description

The linked variables could be declared as constant since these state variables are never modified.

Recommendation

We recommend declaring these variables as constant .

Alleviation

[VirtuSwap] : Issue acknowledged. Changes have been reflected in the commit hash

bc3e7d6b39f5d6eab179a917cd2e959016a44e10.

SEC-02 VIRTUSWAP

https://canary.accelerator.audit.certikpowered.info/project/0979a050-e211-11ec-9af8-0f13a26b3f9e/report?fid=1660573729870
https://github.com/Virtuswap/v1-core/commit/bc3e7d6b39f5d6eab179a917cd2e959016a44e10

APPENDIX VIRTUSWAP

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Compiler

Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX VIRTUSWAP

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

DISCLAIMER VIRTUSWAP

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER VIRTUSWAP

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

VirtuSwap Security Assessment CertiK Verified on Sept 14th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

