
Security Assessment

Virtuswap - 2nd audit
CertiK Assessed on May 27th, 2023



Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 2 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

8 Minor 6 Resolved, 2 Partially Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

12 Informational 12 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY VIRTUSWAP - 2ND AUDIT

CertiK Assessed on May 27th, 2023

Virtuswap - 2nd audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Exchange

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 05/27/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/Virtuswap/v1-core

...View All

COMMITS
base: f7f7f170514f9ce111268bad1a26f424935adf4f

update1: cc560f3ef20e240e6ac77737f0b50a02dc6d0ba1

update2: de375fba7b852b256defd3067dafe4a1c02c5a3a

...View All

23
Total Findings

20
Resolved

0
Mitigated

2
Partially Resolved

1
Acknowledged

0
Declined

https://github.com/Virtuswap/v1-core
https://github.com/Virtuswap/v1-core/tree/f7f7f170514f9ce111268bad1a26f424935adf4f
https://github.com/Virtuswap/v1-core/commit/cc560f3ef20e240e6ac77737f0b50a02dc6d0ba1
https://github.com/Virtuswap/v1-core/commit/de375fba7b852b256defd3067dafe4a1c02c5a3a


TABLE OF CONTENTS VIRTUSWAP - 2ND AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Dependencies

Third Party Dependencies
Recommendation

Out-of-Scope Dependencies

Findings

CON-12 : Centralization Related Risks

CON-07 : `vFlashSwapCallback()` in vExchangeReserves` Can Be Called Directly

PVB-02 : Discrepancy in Checks Involving pair Balances and `vPool` Balances

CON-02 : Missing Input Validation

CON-04 : `allowList` Token Updates should be Carefully Considered

CON-05 : Swapping Functions Require a Strict Inequality Check for `amountOut`

PVB-03 : Function Checks Recorded `_balanceOut` After Transfer

RVB-02 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

RVB-03 : Potential Loss of Ether

SLV-03 : Potential Division By Zero

SLV-04 : Unsafe Integer Cast and Potential Underflow/Overflow

CON-06 : Discussion On `_update()` Design

CON-08 : Shadowing Local Variable

CON-09 : Missing Emit Events

ERV-01 : Checks Do Not Guarantee Consistent `factory` Address is Used Across Pairs

PFV-02 : User-Defined Getters

PVB-04 : Missing Check Against `reserveRatioWarningThreshold` for Non-Privileged Users

PVB-05 : Discussion on Admin versus EmergencyAdmin in `vPair`

PVB-06 : Missing Error Messages

PVB-07 : Typo

SLV-01 : Documentation Needed on Function `getMaxVirtualTradeAmountRtoN()`

TABLE OF CONTENTS VIRTUSWAP - 2ND AUDIT



SLV-02 : Unused Function

TYP-01 : Variable Names Too Similar

Optimizations

CON-10 : Unnecessary Check on `amountOut`

CON-11 : Unnecessary Check that `amountIn` is Positive

PFV-03 : Unneeded Check that `msg.sender` is Not `address(0)`

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS VIRTUSWAP - 2ND AUDIT



CODEBASE VIRTUSWAP - 2ND AUDIT

Repository

https://github.com/Virtuswap/v1-core

Commit

base: f7f7f170514f9ce111268bad1a26f424935adf4f

update1: cc560f3ef20e240e6ac77737f0b50a02dc6d0ba1

update2: de375fba7b852b256defd3067dafe4a1c02c5a3a

update3: f1306da14917a10ddd6c31de0d0a5c0f854e1dfb

update4: 1e9bfe82f1ff07b1e3e9aa82ddbe52aa83d978db

update5: 57447c4b96279358b43575d41656baf3e0504d44

CODEBASE VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core
https://github.com/Virtuswap/v1-core/tree/f7f7f170514f9ce111268bad1a26f424935adf4f
https://github.com/Virtuswap/v1-core/commit/cc560f3ef20e240e6ac77737f0b50a02dc6d0ba1
https://github.com/Virtuswap/v1-core/commit/de375fba7b852b256defd3067dafe4a1c02c5a3a
https://github.com/Virtuswap/v1-core/tree/f1306da14917a10ddd6c31de0d0a5c0f854e1dfb
https://github.com/Virtuswap/v1-core/tree/1e9bfe82f1ff07b1e3e9aa82ddbe52aa83d978db
https://github.com/Virtuswap/v1-core/tree/57447c4b96279358b43575d41656baf3e0504d44


AUDIT SCOPE VIRTUSWAP - 2ND AUDIT

18 files audited 4 files with Acknowledged findings 4 files with Resolved findings 10 files without findings

ID File SHA256 Checksum

ERV contracts/vExchangeReserves.sol
b7c7e0dc7030cb35743623bf0fdcf83bf078e88

147afcb964f4b24ccf09ee37f

PVB contracts/vPair.sol
a1ed65f5457306e5db946dc611ff16a4201c0e

0317f37df70d92ee94c5176fad

PFV contracts/vPairFactory.sol
048f7516240b1aa49565f7a365498e5f7a0820

4c10dfb23dd6f8b942d8490ef5

RVB contracts/vRouter.sol
febc61a47e3118bcc5342f3befa7a0545eb230

2f5cb6e8322fc4f7007646b5e7

SLV contracts/libraries/vSwapLibrary.sol
1b403ff28c5b8baa3c91763e4993fc22b3e175

a84e3d359b6bbe80cf95f9f6cd

TYP contracts/types.sol
edfd5968505ea61e7f238b20c9c3fa14e65539

0abefb745c75e1eb5d5a5e1b52

PMV contracts/vPoolManager.sol
2caae9f17694eac3ebd6c874af621cc12df770

ee4b133ddfb6b6f347fec5f485

SER contracts/vSwapERC20.sol
d11d46825148fb26289db7cbcc00ae5fa415d

ab5b66c26c16557a825b9312d1f

IER contracts/interfaces/IvExchangeReserves.sol
f4373f438042e0a5af65ea2d8db9175908170f

15522e8ad96c6534541378a699

IFS contracts/interfaces/IvFlashSwapCallback.sol
10cda6df5d8199a1c3386df2f5bed335a334c1

a28ec4619b126ad26d69b255ae

IPV contracts/interfaces/IvPair.sol
8b72dc29e95a0a906565de3e127b3089bbb6

1bfed9f9e57494f2bf6b5961be6d

IPF contracts/interfaces/IvPairFactory.sol
398c8ccaa7258afe0f1a5b09c7645b926631ed

b0820d8119b8b522e97b9da045

IPM contracts/interfaces/IvPoolManager.sol
c94a9afe51b0c4855b97065ad65816b25f7ee

1ecea9ac4d272e336d7840b6148

IRV contracts/interfaces/IvRouter.sol
7e9676b39f7e05aa5e0757aa2cc667eb63c35

ccd7bfc3da3002a56a263bcb882

AUDIT SCOPE VIRTUSWAP - 2ND AUDIT



ID File SHA256 Checksum

ISP contracts/interfaces/IvSwapPoolDeployer.sol
7c105ffa4cca51d5b6feebd6337327d0029870

78cda3236a75f811002144bd6d

WET contracts/interfaces/external/WETH9.sol
2981934b8a59403f4a3679437783f8f4aa2b95

4ed570a75786c34ac981bd55aa

IWE contracts/interfaces/external/IWETH9.sol
0e17a4f53e14b2aa10e394afc92a7b0d3ac1fd

c78610ae6ce720ac19d7e2f05e

PAV contracts/libraries/PoolAddress.sol
dcc8034b37dc712faef920baabc859fa944839

b4f3350d1640210c00aeaf3213

AUDIT SCOPE VIRTUSWAP - 2ND AUDIT



APPROACH & METHODS VIRTUSWAP - 2ND AUDIT

This report has been prepared for Virtuswap to discover issues and vulnerabilities in the source code of the Virtuswap - 2nd

audit project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS VIRTUSWAP - 2ND AUDIT



DEPENDENCIES VIRTUSWAP - 2ND AUDIT

Third Party Dependencies

The protocol is serving as the underlying entity to interact with third party protocols. The third parties that the contracts

interact with are:

WETH9

The scope of the audit treats third party entities as black boxes and assumes their functional correctness. However, in the

real world, third parties can be compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties

can possibly create severe impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

Recommendation

We recommend constantly monitoring the third parties involved to mitigate any side effects that may occur when unexpected

changes are introduced.

Out-of-Scope Dependencies

Newton's method for approximating roots via the derivative is iterated seven times in function

getMaxVirtualTradeAmountRtoN() . The margin of error may reduce with the number of steps taken. The assessment of

the margin of error through the use of this fixed number of iterations to approximate the derivative is not within the scope of

this audit. We recommend the team ensures the sufficient accuracy of the calculation for all possible ranges of values used in

the calculation.

DEPENDENCIES VIRTUSWAP - 2ND AUDIT



FINDINGS VIRTUSWAP - 2ND AUDIT

This report has been prepared to discover issues and vulnerabilities for Virtuswap - 2nd audit. Through this audit, we have

uncovered 23 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CON-12 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

CON-07

vFlashSwapCallback()  In

VExchangeReserves` Can Be Called

Directly

Logical Issue,

Control Flow
Medium Resolved

PVB-02
Discrepancy In Checks Involving Pair

Balances And vPool  Balances
Inconsistency Medium Resolved

CON-02 Missing Input Validation Volatile Code Minor Resolved

CON-04
allowList  Token Updates Should Be

Carefully Considered
Volatile Code Minor Resolved

CON-05
Swapping Functions Require A Strict

Inequality Check For amountOut
Logical Issue Minor Resolved

PVB-03
Function Checks Recorded

_balanceOut  After Transfer
Logical Issue Minor Resolved

RVB-02
Unchecked ERC-20 transfer()  /

transferFrom()  Call
Volatile Code Minor Resolved

RVB-03 Potential Loss Of Ether Control Flow Minor Resolved

SLV-03 Potential Division By Zero Volatile Code Minor Partially Resolved

FINDINGS VIRTUSWAP - 2ND AUDIT

23
Total Findings

0
Critical

1
Major

2
Medium

8
Minor

12
Informational



ID Title Category Severity Status

SLV-04
Unsafe Integer Cast And Potential

Underflow/Overflow
Logical Issue Minor Partially Resolved

CON-06 Discussion On _update()  Design Inconsistency Informational Resolved

CON-08 Shadowing Local Variable Coding Style Informational Resolved

CON-09 Missing Emit Events Coding Style Informational Resolved

ERV-01
Checks Do Not Guarantee Consistent

factory  Address Is Used Across Pairs
Inconsistency Informational Resolved

PFV-02 User-Defined Getters Coding Style Informational Resolved

PVB-04

Missing Check Against

reserveRatioWarningThreshold  For

Non-Privileged Users

Control Flow Informational Resolved

PVB-05
Discussion On Admin Versus

EmergencyAdmin In vPair
Control Flow Informational Resolved

PVB-06 Missing Error Messages Coding Style Informational Resolved

PVB-07 Typo Coding Style Informational Resolved

SLV-01
Documentation Needed On Function

getMaxVirtualTradeAmountRtoN()
Coding Style Informational Resolved

SLV-02 Unused Function Coding Style Informational Resolved

TYP-01 Variable Names Too Similar Coding Style Informational Resolved

FINDINGS VIRTUSWAP - 2ND AUDIT



CON-12 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization /

Privilege
Major

contracts/vExchangeReserves.sol (updated base): 22~2

3; contracts/vPair.sol (updated base): 51, 542~543, 560~5

61, 571~572, 580~581, 587, 593; contracts/vPairFactory.s

ol (updated base): 90, 102, 112, 119, 129, 136, 146; contra

cts/vRouter.sol (updated base): 496

Acknowledged

Description

vExchangeReserves.sol

In the contract vExchangeReserves  the role admin  (from factory ) has authority over the following functions:

changeIncentivesLimitPct() ;

Any compromise to the admin  account may allow the hacker to take advantage of this authority and set newLimit  to 0,

making _leftoverAmount  0 in swapNativeToReserve() .

vPair.sol

In the contract vPair  the role admin  (from factory ) has authority over the following functions:

setAllowList() ;

setFee() ;

setMaxReserveThreshold() ;

setMaxAllowListCount() ;

Any compromise to the admin  account may allow the hacker to take advantage of this authority and extract most funds

from the vPair  contract by calling function swapNativeToReserve()  to swap out a given specified token on the

allowList  without paying back a token amount.

In the contract vPair  the role emergencyAdmin  has authority over the functions shown in the diagram below. Any

compromise to the emergencyAdmin  account may allow the hacker to take advantage of this authority and set the

emergencyDiscount  at 100% so that either the emergencyAdmin  or admin  role can use function

swapNativeToReserve()  to extract most funds from the vPair  contract.

CON-12 VIRTUSWAP - 2ND AUDIT



Authenticated Role

Function State Variables

Function State Variables
emergencyAdmin

setEmergencyDiscount

setReserveRatioWarningThreshold

emergencyDiscount

reserveRatioWarningThreshold

vPairFactory.sol

In the contract vPairFactory  the role admin  has authority over the functions shown in the diagram below. Any

compromise to the admin  account may allow the hacker to take advantage of this authority and set a malicious contract for

vPoolManagerAddress , or update defaultAllowList  in such a way to steal all funds from each vPair  via a token

address owned by the hacker.

Function State Variables

Function State Variables

Function State Variables

Authenticated Role

Function State Variables

setVPoolManagerAddress vPoolManager

setDefaultAllowList defaultAllowList

setExchangeReservesAddress exchangeReserves

admin

setPendingAdmin pendingAdmin

In the contract vPairFactory  the role emergencyAdmin  has authority over the functions shown in the diagram below. Any

compromise to the emergencyAdmin  account may allow the hacker to take advantage of this authority and disrupt

functionality within any vPair  contract (see vPair  section above).

Authenticated Role Function State Variables

emergencyAdmin setPendingEmergencyAdmin pendingEmergencyAdmin

CON-12 VIRTUSWAP - 2ND AUDIT



vRouter.sol

In the contract vRouter  the role factory  has authority over the functions shown in the diagram below. Any compromise to

the factory  account may allow the hacker to take advantage of this authority and change the factory  address to an

unknown implementation which can affect the expected pair addresses returned from function getPairAddress() .

Function State VariablesAuthenticated Role

changeFactory factoryfactory

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

CON-12 VIRTUSWAP - 2ND AUDIT



A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[CertiK] : The team acknowledges the finding and states they will address the issue in the future, which will not be

included in this audit engagement.

CON-12 VIRTUSWAP - 2ND AUDIT



CON-07 vFlashSwapCallback()  IN VEXCHANGERESERVES` CAN

BE CALLED DIRECTLY

Category Severity Location Status

Logical Issue,

Control Flow
Medium

contracts/vExchangeReserves.sol (updated base): 39~40, 84~8

8, 93~94; contracts/vPair.sol (updated base): 202~203, 266~278
Resolved

Description

It is inferred that function vFlashSwapCallback()  in contract vExchangeReserves  is only meant to be called by a vPair

contract after the call is initiated in function exchange() . Instead, the function can be called directly through a custom

contract by encoding the msg.sender  contract address as the jkPair1  address.

This address is only used as the to  parameter in the call to swapNativeToReserve()  in decoded address jkPair2 . As

such, the call can be used to directly collect the incentive amount calculated from the difference in the actual current balance

of the swapped native token and its previously recorded pair balance.

Similarly, function exchange()  can be called with a custom jkPair2  contract address, so that function call to

swapNativeToReserve()  includes this contract as the to  address. As long as the custom jkPair2  contract logic returns

the requiredAmountIn  needed for the swap, the transaction can successfully be completed.

Recommendation

The custom functionality appears to be in place in order to control the way in which a vPair  contract's function

swapNativeToReserve()  is referenced. Please specify if it is intended design to allow the vFlashSwapCallback()  function

to be called directly, and whether it is intentional to allow interaction with exchange()  in the manner described above.

Alleviation

[CertiK] : The team made changes resolving the finding in commit acf31ecefc41c8643c49fd0afa0b4c9d9a1eb9a6 and

d78d6ffa2c93c1177883cbe5bb33bd8fe4931b39.

CON-07 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/acf31ecefc41c8643c49fd0afa0b4c9d9a1eb9a6
https://github.com/Virtuswap/v1-core/commit/d78d6ffa2c93c1177883cbe5bb33bd8fe4931b39


PVB-02 DISCREPANCY IN CHECKS INVOLVING PAIR BALANCES
AND vPool  BALANCES

Category Severity Location Status

Inconsistency Medium
contracts/vPair.sol (updated base): 231~232, 235~236, 291~310, 31

3~314, 353~354, 370~371, 385~403
Resolved

Description

Function swapNativeToReserve()  and swapReserveToNative()  check that amountOut  does not exceed

vPool.balance1 . This balance in vPool  is meant to represent the amount of funds that the virtual pool holds for that

token, however, it may not be an up-to-date representation of the actual balance that the vPair  token contract holds. This

is because the update to the returned vPool  values depends on whether the current block.number  compared to the last

updated block, and the last pair balances used in calculating vPool  information may not have been recently updated.

In the case of swapNativeToReserve() , if the amountOut  exceeds the last recorded reserves  mapping value for

vPool.token1 , then the function will revert due to underflow during transfer of the amountOut  without a specific error

message.

For function swapReserveToNative() , if the amountOut  exceeds the corresponding pair balance value, then the function

will revert due to underflow during transfer of the amountOut  without a specific error message.

Likewise, the conversion of _reserveBaseValue  in both swapNativeToReserve()  and swapReserveToNative()  first

converts the _reserveBaseValue  using vPool  balances, then converts again (if needed) using the pair balances of the

vPair  contract. For instance, in function swapNativeToReserve() , if vPool.balance0  is notably distinct from

pairBalance1  this could cause issues with the resulting conversion of _reserveBaseValue  from the out-token to token0

of the vPair  contract.

The fact that this difference in conversion only occurs if the reserve swap did not involve token0  of the vPair  opens the

update up to further possible inconsistency, since for some virtual swaps, the pair balances will be involved and for other

virtual swaps, only vPool  balances will be involved.

Recommendation

We recommend adding checks for the amountOut  against the corresponding values before attempted transfer of the

amountOut .

We additionally recommend accounting for the possibility of differences in the vPair  pair balances and the vPool

recorded balances in updates to the reserveBaseValue  mapping in each function.

Alleviation

PVB-02 VIRTUSWAP - 2ND AUDIT



[CertiK] : The team resolved the first item in the description in commit de375fba7b852b256defd3067dafe4a1c02c5a3a.

The team makes the following statement regarding the second item in the description:

[Virtuswap] : "In quote function the ratio between two balances is crucial, not the actual values. So even if vPool.balance1

is not equivalent pairBalance0, the conversion will be correct."

[CertiK] : Since the team states that it is intended design for these values of vPool.balance1  and pairBalance0  to be

distinct, the finding is considered resolved. Furthermore, we note that, whether two references to the same jkPair  and

ikPair  are used in the vPoolManager 's function getVirtualPool()  in the same block or in two different blocks, the

vPool.balance  value should always be less or equal to its corresponding pairBalance0  value, either through the use of

function _reduceBalances()  in vPoolManager  in the case where both calls have occurred in the same block, or through

the function calculateVPool()  in vSwapLibrary  in the case where the calls have occurred in separate blocks. In both

cases, the reduction to virtual pool balances appears consistent.

PVB-02 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/de375fba7b852b256defd3067dafe4a1c02c5a3a


CON-02 MISSING INPUT VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/vPair.sol (updated base): 268~269, 542~543; contracts/vPairFa

ctory.sol (updated base): 70~71, 91~92, 103~104, 146~151
Resolved

Description

Contract vPairFactory

The function setDefaultAllowList()  is missing a check that the length is not larger than ; if it is larger, the

maxAllowListCount  will overflow due to the uint24  casting;

The function setDefaultAllowList()  is missing a check that there are no repeated addresses in the array. Any

repeated addresses will cause the included address to be double counted in reserveBaseSum() , which causes a

miscalculation in library function getMaxVirtualTradeAmountRtoN() ;

The functions setVPoolManagerAddress()  and setExchangeReservesAddress  are missing checks that the

respective variables pairFactory  and factory  are set to address(this) ;

Contract vPair

The function setAllowList()  is missing a check that there are no repeated addresses in _allowList . Any

repeated addresses will cause the included address to be double counted in reserveBaseSum() , which causes a

miscalculation in library function getMaxVirtualTradeAmountRtoN() ;

The function swapNativeToReserve()  is missing a check that the balanceDiff  is at least the

requiredAmountIn . The function will revert without returning a specific error message due to underflow if this is not

the case.

The function setReserveRatioWarningThreshold()  is missing a check that the updated input lies within a

predetermined expected range for the value.

Recommendation

We recommend adding the input validation in each scenario described above.

Alleviation

[CertiK] : The team resolved the finding in commit fc4027cc39d01657000dbf6361f0f9ad4e4ec90a and

2a42a79077e67c375e2448ed3af978d924047089.

CON-02 VIRTUSWAP - 2ND AUDIT

2 −24 1

https://github.com/Virtuswap/v1-core/commit/fc4027cc39d01657000dbf6361f0f9ad4e4ec90a
https://github.com/Virtuswap/v1-core/commit/2a42a79077e67c375e2448ed3af978d924047089


CON-04 allowList  TOKEN UPDATES SHOULD BE CAREFULLY

CONSIDERED

Category Severity Location Status

Volatile

Code
Minor

contracts/vPair.sol (updated base): 542~543; contracts/vPairFactory.sol

(updated base): 146~147
Resolved

Description

The update of allowList  and defaultAllowList  should be executed with caution. Discrepancies between the

allowList  in two related vPair  contracts may cause unintended relationships between certain tokens.

vPair  token addresses should not be included on the allowList  of a given pair contract.

allowList  in a vPair  should not be allowed to contain any of the tokens used that make up the vPair  itself, but

there is no prevention from this occurring in vPairFactory  or in function updateAllowList()  in the vPair

contract itself. If either token0  or token1  is present on the allowList , then the virtual swap functionality may be

used rather than swapNative() .

Recommendation

We recommend adding in prevention in vPairFactory  that prevents a pair from being created which contains a token on its

own allowList .

Additionally, we recommend vetting each token on the allowList  carefully for compatibility with the logic of the exchange.

Alleviation

[CertiK] : The team made changes resolving the finding in commit 5d98982301028517ba1fb75dd240d7381f89c754.

CON-04 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/5d98982301028517ba1fb75dd240d7381f89c754


CON-05 SWAPPING FUNCTIONS REQUIRE A STRICT INEQUALITY
CHECK FOR amountOut

Category Severity Location Status

Logical

Issue
Minor

contracts/libraries/vSwapLibrary.sol (updated base): 55~56; contracts/vPa

ir.sol (updated base): 157~158, 159~164, 352~353, 357~362
Resolved

Description

In function swapReserveToNative() , amountOut  cannot exceed vPool.balance1 . However, in the case where

amountOut  is equivalent to vPool.balance1 , the check passes, but the function will revert in the call to getAmountIn() ,

since in that case amountOut  and pairBalanceOut  are equal, causing the denominator to be 0.

The same issue is present in function swapNative() .

Recommendation

We recommend the use of a strict inequality when comparing amountOut  to vPool.balance1  so that a specific error

message is thrown in this case.

Alleviation

[CertiK] : The team resolved the finding in commit 0d093cb610de71f7e57134bbe704760fafd65d82.

CON-05 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/0d093cb610de71f7e57134bbe704760fafd65d82


PVB-03 FUNCTION CHECKS RECORDED _balanceOut  AFTER

TRANSFER

Category Severity Location Status

Logical Issue Minor contracts/vPair.sol (updated base): 146~147, 157~158 Resolved

Description

Function swapNative()  checks that amountOut  does not exceed _balanceOut  (the corresponding pair balance), after

safeTransfer()  has already been called to transfer the amountOut .

If amountOut  exceeds the tokenOut  balance of the vPair  contract, then the call will revert due to underflow without a

specific error message.

Recommendation

We recommend moving the safe transfer of the tokenOut  after the check that amountOut  does not exceed

_balanceOut .

Alleviation

[CertiK] : The team resolved the finding in commit 038938e99ddd9bb5f50120fea3775aa2a441184b.

PVB-03 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/038938e99ddd9bb5f50120fea3775aa2a441184b


RVB-02 UNCHECKED ERC-20 transfer()  / transferFrom()  CALL

Category Severity Location Status

Volatile Code Minor contracts/vRouter.sol (updated base): 101 Resolved

Description

The return value of the transfer()/transferFrom() call is not checked.

101             IWETH9(WETH9).transfer(msg.sender, requiredBackAmount);

Recommendation

Since some ERC-20 tokens return no values and others return a bool  value, they should be handled with care. We

recommend using the OpenZeppelin's SafeERC20.sol  implementation to interact with the transfer()  and

transferFrom()  functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false  is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[CertiK] : The team resolved the finding in commit 4e878abfd05a4f5593e95bf7c3e701b37d7f7c1a.

RVB-02 VIRTUSWAP - 2ND AUDIT

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
https://github.com/Virtuswap/v1-core/commit/4e878abfd05a4f5593e95bf7c3e701b37d7f7c1a


RVB-03 POTENTIAL LOSS OF ETHER

Category Severity Location Status

Control

Flow
Minor

contracts/vRouter.sol (updated base): 94, 108~115, 125~126, 131, 152~

153, 158, 189, 219
Resolved

Description

If a user calls a payable  function and includes a positive msg.value  but the tokenIn  is an address other than WETH ,

where the user has given allowance for the tokenIn  they specified, then the msg.value  will be left in vRouter  and can

potentially be extracted by another account.

Recommendation

We recommend preventing the inclusion of msg.value  in the case where tokenIn  is not WETH .

Alleviation

[CertiK] : The team made changes resolving the finding in commit e0389006a555c7968bbe9c9d9a755c9e3d17072e.

RVB-03 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/e0389006a555c7968bbe9c9d9a755c9e3d17072e


SLV-03 POTENTIAL DIVISION BY ZERO

Category Severity Location Status

Volatile

Code
Minor

contracts/libraries/vSwapLibrary.sol (remediation_update1): 196~2

19, 245~246, 247~248, 253~254, 257~258, 267~268, 271~272, 2

81~282, 285~286, 295~296, 299~300, 309~310, 313~314, 323~3

24, 327~328, 337~338, 341~342, 348~358

Partially Resolved

Description

It is possible for params.vBalance0  to be 0, in which case, the resulting values for temp  and derivative  will also be 0.

In this instance, the following update to maxAmountIn  will revert due to division by 0 without a specific error message:

                      maxAmountIn +=

                        Math.mulDiv(c1, uc2, derivative) -

                        Math.mulDiv(maxAmountIn, temp, derivative);

Similar cases are cited above.

Recommendation

We recommend adding a check that ensures derivative  is nonzero before dividing.

Alleviation

[CertiK] : The team made changes based on this finding in commit f1306da14917a10ddd6c31de0d0a5c0f854e1dfb.

In the changes, the team provided further documentation on how the newly added requirements should ensure calculated

values lie within expected bounds.

Please the points below concerning the argument in lines 241 - 248:

1. In line 248, r  is replaced by an upper bound of ; however, there do not appear to be any restraints within the

vPair  contract enforcing that values in the reserves  mapping do not exceed this value.

2. The line 248 is incorrect. Based on the previous line, the expression should read

Even in truncating the trailing term , the calculation for b  could get as large  which is larger than the

maximum int256  value by

SLV-03 VIRTUSWAP - 2ND AUDIT

1032

10 ⋅8 (10 ⋅64 2 ⋅ 10 +5 2 ⋅ 10 )64

= 10 ⋅8 (2 ⋅ 10 ) ⋅64 (10 +5 1) ≤ 2 ⋅ 10 +77 2 ⋅ 1072

2 ⋅ 1072 2 ⋅ 1077

https://github.com/Virtuswap/v1-core/commit/f1306da14917a10ddd6c31de0d0a5c0f854e1dfb


142103955381341902288214507495656046073365007667179717980271207996043435180033.

Since overflow is still possible, it is still possible for the derivative  to be 0.

[CertiK] :

1. Regarding the first issue stated about reserves , the team states they will not add any checks in vPair contract, but

intend to find a way to calculate maxVirtualAmountRtoN  without upper bound of 10^32 (using uint512 library for

example).

2. The team made changes related to this finding in commit 1e9bfe82f1ff07b1e3e9aa82ddbe52aa83d978db.

The change to division by the params.fee  value resolves the issue stated in point 2 of the alleviation above.

The only potential underflow left comes from casting the return uint256  value of Math  function mulDiv()  as an int256

type, starting in line 323 (and each time it is used after). Function mulDiv()  will revert if the operations produce an overflow

of the uint256  type, but the uint256  value returned may still be larger than the max(int256)  value.

Upon resolution of the underflow due to integer casting, this finding may be partially resolved, since the reserves  value

may still be larger than 10^32.

[CertiK] : The team made changes partially resolving this finding in commit

57447c4b96279358b43575d41656baf3e0504d44.

SLV-03 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/1e9bfe82f1ff07b1e3e9aa82ddbe52aa83d978db
https://github.com/Virtuswap/v1-core/commit/57447c4b96279358b43575d41656baf3e0504d44


SLV-04 UNSAFE INTEGER CAST AND POTENTIAL
UNDERFLOW/OVERFLOW

Category Severity Location Status

Logical

Issue
Minor

contracts/libraries/vSwapLibrary.sol (remediation_update1): 193~1

95, 196~197, 198~202, 203~213, 214~219, 221~222, 222~234, 22

3~227, 228~234, 248~249, 250~251, 252~254, 256~257, 262~26

3, 264~265, 266~268, 270~271, 276~277, 278~279, 280~282, 284

~285, 290~291, 292~293, 294~296, 298~299, 304~305, 306~307,

306~307, 308~310, 312~313, 318~319, 320~321, 322~324, 326~3

27, 332~333, 334, 336~338, 340~341, 348~359, 351~354

Partially Resolved

Description

1. If values reserveRatioFactor  and params.vBalance1  are allowed to grow over time, then uint256  value a

may overflow, since its calculation is inside an unchecked  box. In instances where pair balance liquidity is deep, it

may be possible for this to occur through repeated calls to swapReserveToNative()  using amounts which cause

requiredAmountIn  to not exceed the value of getMaxVirtualTradeAmountRtoN(vPool) .

2. If params.vBalance0  is larger than  then the casting to int256(params.vBalance0)  in int256  value

b  will result in an overflow of the value, causing it to be an unintended negative value;

3. In the following expression:

SLV-04 VIRTUSWAP - 2ND AUDIT

2 −255 1



int256 b = int256(params.vBalance0) *

                 (-2 *

                     int256(

                         params.balance0 *

                             params.fee *

                             params.maxReserveRatio

                     ) +

                     int256(

                         params.vBalance1 *

                             (2 *

                                 params.fee *

                                 params.maxReserveRatio +

                                 params.priceFeeFactor *

                                 params.reserveRatioFactor) +

                             params.fee *

                             params.reserveRatioFactor *

                             params.reservesBaseValueSum

                     )) +

                 int256(

                     params.fee *

                         params.reserves *

                         params.reserveRatioFactor *

                         params.vBalance1

                 );

Even if each individual integer term is less , the complete expression may still overflow if the inner sum or

final product is greater than this upper bound.

4. In the following expression:

                    negativeB ? (a * maxAmountIn - ub) : (a * maxAmountIn + ub)

The expression a * maxAmountIn - ub  may underflow if ub  is greater than a*maxAmountIn . The expression

a*maxAmountIn + ub  may overflow if the sum exceeds the maximum uint256  value.

The above is a sample of potential overflow/underflow and truncation due to unsafe integer casting.

Recommendation

We recommend implementing both of the following:

1. Remove each unchecked  box and

2. Check the bounds of the starting input values of params  so subsequent integer castings can be verified to stay

within range.

SLV-04 VIRTUSWAP - 2ND AUDIT

2 −255 1



Additionally we recommend providing explanation for how it is known each item will not cause truncation on conversion or

produce an overflow/underflow respectively.

Alternatively to the second recommendation item, one can check the bounds of integer values before casting, so the values

will not be truncated or flip the sign. The SafeCast library from OpenZeppelin can also be used in place of type casting.

Reference: https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/71aaca2d9db465560213740392044b2cd3853a3b/contracts/utils/math/SafeCast.sol

Alleviation

[CertiK] : The team made changes based on this finding in commit f1306da14917a10ddd6c31de0d0a5c0f854e1dfb.

In the changes, the team provided further documentation on how the newly added requirements should ensure calculated

values lie within expected bounds.

Please the points below concerning the argument in lines 241 - 248:

1. In line 248, r  is replaced by an upper bound of ; however, there do not appear to be any restraints within the

vPair  contract enforcing that values in the reserves  mapping do not exceed this value.

2. The line 248 is incorrect. Based on the previous line, the expression should read

Even in truncating the trailing term , the calculation for b  could get as large  which is larger than the

maximum int256  value by

142103955381341902288214507495656046073365007667179717980271207996043435180033.

Since overflow is still possible, it is still possible for the derivative  to be 0.

[CertiK] :

1. Regarding the first issue stated about reserves , the team states they will not add any checks in vPair contract, but

intend to find a way to calculate maxVirtualAmountRtoN  without upper bound of 10^32 (using uint512 library for

example).

2. The team made changes related to this finding in commit 1e9bfe82f1ff07b1e3e9aa82ddbe52aa83d978db.

The change to division by the params.fee  value resolves the issue stated in point 2 of the alleviation above.

The only potential underflow left comes from casting the return uint256  value of Math  function mulDiv()  as an int256

type, starting in line 323 (and each time it is used after). Function mulDiv()  will revert if the operations produce an overflow

of the uint256  type, but the uint256  value returned may still be larger than the max(int256)  value.

Upon resolution of the underflow due to integer casting, this finding may be partially resolved, since the reserves  value

may still be larger than 10^32.

SLV-04 VIRTUSWAP - 2ND AUDIT

1032

10 ⋅8 (10 ⋅64 2 ⋅ 10 +5 2 ⋅ 10 )64

= 10 ⋅8 (2 ⋅ 10 ) ⋅64 (10 +5 1) ≤ 2 ⋅ 10 +77 2 ⋅ 1072

2 ⋅ 1072 2 ⋅ 1077

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/71aaca2d9db465560213740392044b2cd3853a3b/contracts/utils/math/SafeCast.sol
https://github.com/Virtuswap/v1-core/commit/f1306da14917a10ddd6c31de0d0a5c0f854e1dfb
https://github.com/Virtuswap/v1-core/commit/1e9bfe82f1ff07b1e3e9aa82ddbe52aa83d978db


[CertiK] : The team made changes partially resolving the finding in commits

57447c4b96279358b43575d41656baf3e0504d44 and 766e62a8499026764a5ca9164eccb3b0c6fe9938.

SLV-04 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/57447c4b96279358b43575d41656baf3e0504d44
https://github.com/Virtuswap/v1-core/commit/766e62a8499026764a5ca9164eccb3b0c6fe9938


CON-06 DISCUSSION ON _update()  DESIGN

Category Severity Location Status

Inconsistency Informational

contracts/libraries/vSwapLibrary.sol (updated base): 122~123; c

ontracts/vPair.sol (updated base): 95~98, 105~106; contracts/v

PoolManager.sol (updated base): 35~37

Resolved

Description

Function _update()  always updates the values pairBalance0  and pairBalance1 , which act as the official recorded

balances for the native tokens in a pair, and are used in determining the price exchange between the two tokens.

However, _lastBlockUpdated , _lastPairBalance0  and _lastPairBalance1  are only updated if the current

block.number  is 3 blocks past the current value of _lastBlockUpdated . These are the values referenced for

ikBalance0  and ikBalance1  in library function getVirtualPool() . This function is called in function

getVirtualPool()  in contract vPoolManager  whenever the current block.number  is not the blockLastUpdated

recorded in mapping vPoolsCache .

Recommendation

Please provide more information on the design choice that the values of _lastPairBalance0  and _lastPairBalance1  are

only updated after three blocks have passed.

Alleviation

[Virtuswap] : The 2-block delay for _lastPairBalance0 and _lastPairBalance1 is implemented to counteract potential virtual

pool price manipulation, where an individual could artificially alter the price in the oracle pool and instantaneously trade in the

virtual pool. Both _lastPairBalance0 and _lastPairBalance1 are solely utilized by the ikPair (oracle) to determine the price

during a virtual exchange involving two tokens. Consequently, the focus is on the ratio between the two, rather than their

actual values.

CON-06 VIRTUSWAP - 2ND AUDIT



CON-08 SHADOWING LOCAL VARIABLE

Category Severity Location Status

Coding

Style
Informational

contracts/vPair.sol (updated base): 461, 501; contracts/vSwapER

C20.sol (updated base): 42
Resolved

Description

A local variable is shadowing another component defined elsewhere.

461         uint256 _totalSupply = totalSupply();

Local variable _totalSupply  in vPair.mint  shadows the variable _totalSupply  in vSwapERC20 .

501         uint256 _totalSupply = totalSupply();

Local variable _totalSupply  in vPair.burn  shadows the variable _totalSupply  in vSwapERC20 .

Recommendation

We recommend removing or renaming the local variable that shadows another definition.

Alleviation

[CertiK] : The team resolved the finding in commit d05c16de6acce308f1abc42378e8685617f5148f.

CON-08 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/d05c16de6acce308f1abc42378e8685617f5148f


CON-09 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

contracts/vExchangeReserves.sol (updated base): 22~23; contract

s/vPair.sol (updated base): 587, 593; contracts/vPairFactory.sol (up

dated base): 102

Resolved

Description

Events should be emitted in sensitive functions controlled by centralization roles.

Recommendation

We recommend emitting events in the functions cited above.

Alleviation

[CertiK] : The team resolved the finding in commit 87ece3e3f9f3c382652a95f22673cf11ecc43e7e.

CON-09 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/87ece3e3f9f3c382652a95f22673cf11ecc43e7e


ERV-01 CHECKS DO NOT GUARANTEE CONSISTENT factory

ADDRESS IS USED ACROSS PAIRS

Category Severity Location Status

Inconsistency Informational contracts/vExchangeReserves.sol (updated base): 79~88 Resolved

Description

In function exchange() , it is checked that a pair exists in factory  for the tokens comprising jkPair1  and jkPair2 .

It is possible that a pair exists in factory  corresponding to tokens _jkToken0  and _jkToken1 , but that the jkPair1

address is not the same as the address returned from getPair()  in the vExchange  stored factory  address.

This does not appear subject to exploit, since ikPair1  is required to have the same factory  address as jkPair1  within

the vPair  contract logic, and jkPair1  still requires an amount of a specific vPool.token0  address to be returned, which

is specific to the factory  corresponding to the jkPair1  address.

Recommendation

We recommend ensuring that this specification meets the intended design of the project.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d78d6ffa2c93c1177883cbe5bb33bd8fe4931b39.

ERV-01 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/d78d6ffa2c93c1177883cbe5bb33bd8fe4931b39


PFV-02 USER-DEFINED GETTERS

Category Severity Location Status

Coding Style Informational contracts/vPairFactory.sol (updated base): 13~14, 41~47 Resolved

Description

The linked functions are equivalent to the compiler-generated getter functions for the respective variables.

Recommendation

We recommend removing the explicit getPair()  function and instead renaming pairs  as getPair , relying on the

compiler-generated getter function for pairs , since the variable is already public.

Alleviation

[CertiK] : The team made changes resolving the finding in commit fe51258c9fd02be105b828e63a443fdd4191ef24.

PFV-02 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/fe51258c9fd02be105b828e63a443fdd4191ef24


PVB-04 MISSING CHECK AGAINST reserveRatioWarningThreshold

FOR NON-PRIVILEGED USERS

Category Severity Location Status

Control Flow Informational contracts/vPair.sol (updated base): 214~215, 236~249 Resolved

Description

Function swapNativeToReserve()  only performs a check that the return value calculateReserveRatio  does not exceed

reserveRatioWarningThreshold  when the msg.sender  is the admin  specified in the vPair  contract's factory .

Please provide more information on why this check is unnecessary in a typical user's case.

Recommendation

We recommend providing more information on why this check is unnecessary in a typical user's case.

Alleviation

[CertiK]: The team states that the reserveRatioWarningThreshold  is for admin purposes only, and not meant to be used as

prevention for typical users when swapping. They further note this is the threshold at which the admin account may begin

manually swapping.

We note for informational purposes that the check against reserveRatioWarningThreshold  does not prevent the

calculateReserveRatio  value from going below this threshold as a consequence of a swap by an admin. Initially, the

reserve ratio may meet the threshold, but after a large enough swap, may be below this lower bound.

PVB-04 VIRTUSWAP - 2ND AUDIT



PVB-05 DISCUSSION ON ADMIN VERSUS EMERGENCYADMIN IN
vPair

Category Severity Location Status

Control Flow Informational contracts/vPair.sol (updated base): 211~217, 242~249, 595 Resolved

Description

Both admin  and emergencyAdmin  are able to call function swapNativeToReserve() , with an adjustment to

requiredAmountIn  potentially including a deep emergencyDiscount  (up to 100%). The emergencyAdmin  is able to adjust

emergencyDiscount , and when this role calls swapNativeToReserve() , there are no checks that the

reserveRatioWarningThreshold  is respected.

Please provide more information on the intended difference in the respective roles of admin  and emergencyAdmin  in a

vPairFactory  contract, since on deploy of pairFactory , the role is given to the same account ( msg.sender ).

The Allowed Reserves section of the site documentation states "the [allow] list is governed by VirtuSwap DAO and can be

updated from time to time, adding or removing certain assets." Is the admin  role meant to represent the VirtuSwap DAO?

Recommendation

We recommend providing more information on the intended difference in the roles.

Alleviation

[Virtuswap] : "DAOs possess a set of privileges on protocols, and there is also an Emergency DAO in place. Within the

swapNativeToReserve function, a liquidation feature exists that can be triggered by the DAO, provided that the pool reserve

ratio is equal to or greater than the reserveRatioWarningThreshold. In exceptional situations, such as a token crash like

Luna, the Emergency DAO should be granted the flexibility to make various decisions regarding the liquidation of the reserve

asset.

On deploy both admin and emergencyAdmin are assigned to msg.sender, but we plan to change it on DAO release."

[CertiK] : We encourage the team to take necessary precautions when transitioning to a DAO for the privileged roles, such

as the use of a time-lock. Please see the Centralization Related Risks finding of the report for more information.

PVB-05 VIRTUSWAP - 2ND AUDIT

https://docs.virtuswap.io/virtuswap-documentation/virtuswap-basics/virtuswap-technology/allowed-reserves


PVB-06 MISSING ERROR MESSAGES

Category Severity Location Status

Coding Style Informational contracts/vPair.sol (updated base): 77 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[CertiK] : The team made changes resolving the finding in commit e7df89253867cbf90541c720949525c9b1782eba.

PVB-06 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/e7df89253867cbf90541c720949525c9b1782eba


PVB-07 TYPO

Category Severity Location Status

Coding Style Informational contracts/vPair.sol (updated base): 293, 387 Resolved

Description

In functions swapNativeToReserve()  and swapReserveToNative() , the word "balance" in the referenced comment is

misspelled as "blance."

Recommendation

We recommend correcting the typo.

Alleviation

[CertiK] : The team made changes resolving the finding in commit f68dc5c5fcf3f9ad96e284eff1ffa1adce224e47.

PVB-07 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/f68dc5c5fcf3f9ad96e284eff1ffa1adce224e47


SLV-01 DOCUMENTATION NEEDED ON FUNCTION
getMaxVirtualTradeAmountRtoN()

Category Severity Location Status

Coding Style Informational contracts/libraries/vSwapLibrary.sol (updated base): 146~313 Resolved

Description

Please provide documentation on the derivation of the formula for the returned value maxAmountIn  so that it may be

checked that the implementation meets the specification. If the formula is present within the team's whitepaper, please

specify the section in which it may be referenced.

Recommendation

We recommend providing more information on the formula used in function getMaxVirtualTradeAmountRtoN() .

Alleviation

[CertiK] : The team made changes resolving the finding in commit cc560f3ef20e240e6ac77737f0b50a02dc6d0ba1.

SLV-01 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/cc560f3ef20e240e6ac77737f0b50a02dc6d0ba1


SLV-02 UNUSED FUNCTION

Category Severity Location Status

Coding Style Informational contracts/libraries/vSwapLibrary.sol (updated base): 93~100 Resolved

Description

Function getVirtualPoolBase()  no longer contains any logic, and is not referenced within the protocol.

Recommendation

We recommend removing the function.

Alleviation

[CertiK] : The team made changes resolving the finding in commit 261c5d5e2fb76f28c62a1e5355cb01c40dbcc9b0.

SLV-02 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/261c5d5e2fb76f28c62a1e5355cb01c40dbcc9b0


TYP-01 VARIABLE NAMES TOO SIMILAR

Category Severity Location Status

Coding Style Informational contracts/types.sol (updated base): 5~16 Resolved

Description

Use of short, similar variable names makes it difficult to keep track of the meaning of each variable when it is used.

Recommendation

We recommend renaming variables so their names are not too similar and convey the meaning more clearly.

Alleviation

[CertiK] : The team made changes resolving the finding in commit b3cee05a45a30fbe5286bcdcb9cf68dc8a1e792f.

TYP-01 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/b3cee05a45a30fbe5286bcdcb9cf68dc8a1e792f


OPTIMIZATIONS VIRTUSWAP - 2ND AUDIT

ID Title Category Severity Status

CON-10 Unnecessary Check On amountOut
Gas

Optimization
Optimization Resolved

CON-11 Unnecessary Check That amountIn  Is Positive
Gas

Optimization
Optimization Resolved

PFV-03
Unneeded Check That msg.sender  Is Not

address(0)

Gas

Optimization
Optimization Resolved

OPTIMIZATIONS VIRTUSWAP - 2ND AUDIT



CON-10 UNNECESSARY CHECK ON amountOut

Category Severity Location Status

Gas

Optimization
Optimization

contracts/libraries/vSwapLibrary.sol (updated base): 77~78; co

ntracts/vPair.sol (updated base): 218~219, 236~240
Resolved

Description

Function swapNativeToReserve()  makes redundant checks that amountOut  is positive. It is checked first directly in the

function logic, and is also checked in call to vSwapLibrary  function quote() .

Recommendation

We recommend only checking this property once.

Alleviation

[CertiK] : The team made changes resolving the finding in commit 77e3712bb5ddcbd8fb76f596b014f119f1a92655.

CON-10 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/77e3712bb5ddcbd8fb76f596b014f119f1a92655


CON-11 UNNECESSARY CHECK THAT amountIn  IS POSITIVE

Category Severity Location Status

Gas

Optimization
Optimization

contracts/libraries/vSwapLibrary.sol (updated base): 56~57; co

ntracts/vPair.sol (updated base): 382~383
Resolved

Description

The use of getAmountIn()  to calculate requiredAmountIn  in function swapReserveToNative()  guarantees that the

value is positive (it is at least 1, provided the calculation does not revert). As such, since the amountIn  is checked that it is

at least the requiredAmountIn , there is no need to also check that amountIn  is positive.

Recommendation

We recommend removing the requirement that amountIn  is positive, since this is guaranteed by the check that amountIn

is at least requiredAmountIn .

Alleviation

[CertiK] : The team made changes resolving the finding in commit 82db81195bd1939a6fa881bcb2cfb64ed5c276f0.

CON-11 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/82db81195bd1939a6fa881bcb2cfb64ed5c276f0


PFV-03 UNNEEDED CHECK THAT msg.sender  IS NOT address(0)

Category Severity Location Status

Gas Optimization Optimization contracts/vPairFactory.sol (updated base): 121, 138 Resolved

Description

It is not possible for the msg.sender  to be address(0) .

Recommendation

We recommend removing this check since it is a statistical impossibility that the msg.sender  is address(0) .

Alleviation

[CertiK] : The team made changes resolving the finding in commit deea29c4618696a65e2b09c5b2c40578aa4e87f0.

PFV-03 VIRTUSWAP - 2ND AUDIT

https://github.com/Virtuswap/v1-core/commit/deea29c4618696a65e2b09c5b2c40578aa4e87f0


FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer  and transferFrom  that are widely used for token transfers,

functions approve  and allowance  that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf  and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-succeed-normal transfer  Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self transfer  Succeeds on Admissible Self Transfers

erc20-transfer-change-state transfer  Has No Unexpected State Changes

erc20-transfer-correct-amount transfer  Transfers the Correct Amount in Non-self Transfers

erc20-transfer-false If transfer  Returns false , the Contract State Is Not Changed

erc20-transfer-correct-amount-self transfer  Transfers the Correct Amount in Self Transfers

erc20-transfer-exceed-balance transfer  Fails if Requested Amount Exceeds Available Balance

erc20-transfer-recipient-overflow transfer  Prevents Overflows in the Recipient's Balance

erc20-transfer-never-return-false transfer  Never Returns false

erc20-transferfrom-succeed-normal transferFrom  Succeeds on Admissible Non-self Transfers

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Property Name Title

erc20-transferfrom-succeed-self transferFrom  Succeeds on Admissible Self Transfers

erc20-transferfrom-change-state transferFrom  Has No Unexpected State Changes

erc20-transferfrom-correct-amount transferFrom  Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-correct-amount-self transferFrom  Performs Self Transfers Correctly

erc20-transferfrom-fail-exceed-balance
transferFrom  Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-false If transferFrom  Returns false , the Contract's State Is Unchanged

erc20-transferfrom-fail-recipient-overflow transferFrom  Prevents Overflows in the Recipient's Balance

erc20-totalsupply-correct-value totalSupply  Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply  Does Not Change the Contract's State

erc20-transferfrom-never-return-false transferFrom  Never Returns false

erc20-balanceof-change-state balanceOf  Does Not Change the Contract's State

erc20-totalsupply-succeed-always totalSupply  Always Succeeds

erc20-balanceof-succeed-always balanceOf  Always Succeeds

erc20-allowance-change-state allowance  Does Not Change the Contract's State

erc20-balanceof-correct-value balanceOf  Returns the Correct Value

erc20-allowance-succeed-always allowance  Always Succeeds

erc20-allowance-correct-value allowance  Returns Correct Value

erc20-approve-change-state approve  Has No Unexpected State Changes

erc20-approve-false If approve  Returns false , the Contract's State Is Unchanged

erc20-approve-correct-amount approve  Updates the Approval Mapping Correctly

erc20-approve-succeed-normal approve  Succeeds for Admissible Inputs

erc20-approve-never-return-false approve  Never Returns false

erc20-transfer-revert-zero transfer  Prevents Transfers to the Zero Address

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Property Name Title

erc20-transferfrom-revert-from-zero transferFrom  Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero transferFrom  Fails for Transfers To the Zero Address

erc20-transferfrom-correct-allowance transferFrom  Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-allowance
transferFrom  Fails if the Requested Amount Exceeds the Available

Allowance

erc20-approve-revert-zero approve  Prevents Approvals For the Zero Address

Verification Results

For the following contracts, model checking established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract vPair (contracts/vPair.sol) In Commit
f7f7f170514f9ce111268bad1a26f424935adf4f

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-self True

erc20-transfer-succeed-normal True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-exceed-balance True

erc20-transfer-change-state True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Detailed Results For Contract vSwapERC20 (contracts/vSwapERC20.sol) In Commit
f7f7f170514f9ce111268bad1a26f424935adf4f

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount-self True

erc20-transfer-correct-amount True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract WETH9 (contracts/interfaces/external/WETH9.sol) In Commit
f7f7f170514f9ce111268bad1a26f424935adf4f

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-change-state Inapplicable

erc20-transfer-correct-amount True

erc20-transfer-false Inapplicable

erc20-transfer-correct-amount-self True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-never-return-false True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-change-state Inapplicable

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-false Inapplicable

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-correct-value Inapplicable

erc20-totalsupply-change-state Inapplicable

erc20-totalsupply-succeed-always True

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state Inapplicable

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-change-state Inapplicable

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-change-state Inapplicable

erc20-approve-false Inapplicable

erc20-approve-correct-amount True

erc20-approve-succeed-normal True

erc20-approve-never-return-false True

FORMAL VERIFICATION VIRTUSWAP - 2ND AUDIT



APPENDIX VIRTUSWAP - 2ND AUDIT

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only

functions being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

APPENDIX VIRTUSWAP - 2ND AUDIT



Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written [] ) and "eventually" (written <> ), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond])  Indicates an invocation of contract function f  within a state satisfying formula cond .

willSucceed(f, [cond])  Indicates an invocation of contract function f  within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond])  Indicates that execution returns from contract function f  in a state satisfying formula

cond . Here, formula cond  may refer to the contract's state variables and to the value they had upon entering the

function (using the old  function).

reverted(f, [cond])  Indicates that execution of contract function f  was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

APPENDIX VIRTUSWAP - 2ND AUDIT



public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

erc20-transfer-revert-zero

transfer  Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount)  must fail if the

recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

  <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

    == false)))

erc20-transfer-succeed-normal

transfer  Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient, amount)  must

succeed and return true  if

the recipient  address is not the zero address,

amount  does not exceed the balance of address msg.sender ,

transferring amount  to the recipient  address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

    value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

transfer  Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form transfer(recipient,

amount)  where the recipient  address equals the address in msg.sender  must succeed and return true  if

the value in amount  does not exceed the balance of msg.sender  and

the supplied gas suffices to complete the call. Specification:

APPENDIX VIRTUSWAP - 2ND AUDIT



[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

    value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

    _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

transfer  Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of transfer(recipient,

amount)  that return true  must subtract the value in amount  from the balance of msg.sender  and add the same value to

the balance of the recipient  address. Specification:

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

    && value >= 0 && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[msg.sender] >= 0 && _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true ==>

      _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

      == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

transfer  Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient, amount)

that return true  and where the recipient  address equals msg.sender  (i.e. self-transfers) must not change the balance

of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

    && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

      old(_balances[to]))))

erc20-transfer-change-state

transfer  Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount)  that return

true  must only modify the balance entries of the msg.sender  and the recipient  addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

  <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

        old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

        old(_balances[p1]) && other_state_variables ==

        old(other_state_variables)))))

erc20-transfer-exceed-balance

APPENDIX VIRTUSWAP - 2ND AUDIT



transfer  Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that exceeds the

balance of msg.sender  must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

    _balances[msg.sender] >= 0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

      == false)))

erc20-transfer-recipient-overflow

transfer  Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount)  must fail if it

causes the balance of the recipient  address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

    >= 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000 && value >

    0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

    finished(contract.transfer(to, value), return == false) ||

    finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

      value -

      0x10000000000000000000000000000000000000000000000000000000000000000)))

erc20-transfer-false

If transfer  Returns false , the Contract State Is Not Changed. If the transfer  function in contract contract  fails by

returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

        value), return == false ==> (_balances == old(_balances) && _totalSupply ==

        old(_totalSupply) && _allowances == old(_allowances) &&

        other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

transfer  Never Returns false . The transfer function must never return false  to signal a failure. Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

erc20-transferfrom-revert-from-zero

APPENDIX VIRTUSWAP - 2ND AUDIT



transferFrom  Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest, amount)  where

the from  address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

      false)))

erc20-transferfrom-revert-to-zero

transferFrom  Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount)  where

the dest  address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

      false)))

erc20-transferfrom-succeed-normal

transferFrom  Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest, amount)  must

succeed and return true  if

the value of amount  does not exceed the balance of address from ,

the value of amount  does not exceed the allowance of msg.sender  for address from ,

transferring a value of amount  to the address in dest  does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

    address(0) && from != to && value <= _balances[from] && value <=

    _allowances[from][msg.sender] && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000 && value >=

    0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

transferFrom  Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount)  where the

dest  address equals the from  address (i.e. self-transfers) must succeed and return true  if:

The value of amount  does not exceed the balance of address from ,

the value of amount  does not exceed the allowance of msg.sender  for address from , and

the supplied gas suffices to complete the call. Specification:

APPENDIX VIRTUSWAP - 2ND AUDIT



[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

    && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

    >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _allowances[from][msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

transferFrom  Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount)  that succeed and that return true  subtract the value in amount  from the balance of address from  and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true ==>

      _balances[from] == old(_balances[from]) - value && _balances[to] ==

      old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

transferFrom  Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true  and where the address in from  equals the address in dest  (i.e. self-transfers) do not change the

balance entry of the from  address (which equals dest ). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

    value < 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true ==>

      _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

transferFrom  Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true  must decrease the allowance for address msg.sender  over address from  by the value in amount .

Specification:

APPENDIX VIRTUSWAP - 2ND AUDIT



[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true ==>

      ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

      value) || (_allowances[from][msg.sender] ==

      old(_allowances[from][msg.sender]) && (from == msg.sender ||

        old(_allowances[from][msg.sender]) ==

        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))))))

erc20-transferfrom-change-state

transferFrom  Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest, amount)

that return true  may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender  for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

    (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

      to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

      _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

      old(_allowances[p2][p3]) && other_state_variables ==

      old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

transferFrom  Fails if the Requested Amount Exceeds the Available Balance. Any call of the form transferFrom(from,

dest, amount)  with a value for amount  that exceeds the balance of address from  must fail. Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

      false)))

erc20-transferfrom-fail-exceed-allowance

transferFrom  Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form transferFrom(from,

APPENDIX VIRTUSWAP - 2ND AUDIT



dest, amount)  with a value for amount  that exceeds the allowance of address msg.sender  must fail. Specification:

[](started(contract.transferFrom(from, to, value), msg.sender != from && value >

    _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

        value), return == false)))

erc20-transferfrom-fail-recipient-overflow

transferFrom  Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount)  with a

value in amount  whose transfer would cause an overflow of the balance of address dest  must fail. Specification:

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

    value >= 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    value < 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

        value), return == false) || finished(contract.transferFrom(from, to,

        value), _balances[to] > old(_balances[to]) + value -

      0x10000000000000000000000000000000000000000000000000000000000000000)))

erc20-transferfrom-false

If transferFrom  Returns false , the Contract's State Is Unchanged. If transferFrom  returns false  to signal a failure,

it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

  <>(finished(contract.transferFrom(from, to, value), return == false ==>

    (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

    _allowances == old(_allowances) && other_state_variables ==

    old(other_state_variables)))))

erc20-transferfrom-never-return-false

transferFrom  Never Returns false . The transferFrom  function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

totalSupply  Always Succeeds. The function totalSupply  must always succeeds, assuming that its execution does not

run out of gas. Specification:

APPENDIX VIRTUSWAP - 2ND AUDIT



[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

totalSupply  Returns the Value of the Corresponding State Variable. The totalSupply  function must return the value that

is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

      == _totalSupply)))

erc20-totalsupply-change-state

totalSupply  Does Not Change the Contract's State. The totalSupply  function in contract contract must not change any

state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

      _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

      _allowances == old(_allowances) && other_state_variables ==

      old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

balanceOf  Always Succeeds. Function balanceOf  must always succeed if it does not run out of gas. Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

balanceOf  Returns the Correct Value. Invocations of balanceOf(owner)  must return the value that is held in the contract's

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

      return == _balances[owner])))

erc20-balanceof-change-state

balanceOf  Does Not Change the Contract's State. Function balanceOf  must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

      _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

      _allowances == old(_allowances) && other_state_variables ==

      old(other_state_variables))))

APPENDIX VIRTUSWAP - 2ND AUDIT



Properties related to function allowance

erc20-allowance-succeed-always

allowance  Always Succeeds. Function allowance  must always succeed, assuming that its execution does not run out of

gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

allowance  Returns Correct Value. Invocations of allowance(owner, spender)  must return the allowance that address

spender  has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

  <>(finished(contract.allowance(owner, spender), return ==

    _allowances[owner][spender])))

erc20-allowance-change-state

allowance  Does Not Change the Contract's State. Function allowance  must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

  <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

    && _balances == old(_balances) && _allowances == old(_allowances) &&

    other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

approve  Prevents Approvals For the Zero Address. All calls of the form approve(spender, amount)  must fail if the

address in spender  is the zero address. Specification:

[](started(contract.approve(spender, value), spender == address(0)) ==>

  <>(reverted(contract.approve) || finished(contract.approve(spender, value),

    return == false)))

erc20-approve-succeed-normal

approve  Succeeds for Admissible Inputs. All calls of the form approve(spender, amount)  must succeed, if

the address in spender  is not the zero address and

the execution does not run out of gas. Specification:

APPENDIX VIRTUSWAP - 2ND AUDIT



[](started(contract.approve(spender, value), spender != address(0)) ==>

  <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

approve  Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount)  that

return true  must correctly update the allowance mapping according to the address msg.sender  and the values of

spender  and amount . Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

    0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.approve(spender, value), return == true ==>

      _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

approve  Has No Unexpected State Changes. All calls of the form approve(spender, amount)  must only update the

allowance mapping according to the address msg.sender  and the values of spender  and amount  and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

      msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

        value), return == true ==> _totalSupply == old(_totalSupply) && _balances

      == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

      other_state_variables == old(other_state_variables))))

erc20-approve-false

If approve  Returns false , the Contract's State Is Unchanged. If function approve  returns false  to signal a failure, it

must undo all state changes that it incurred before returning to the caller. Specification:

[](willSucceed(contract.approve(spender, value)) ==>

  <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

      old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

      old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

approve  Never Returns false . The function approve  must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

APPENDIX VIRTUSWAP - 2ND AUDIT



DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER VIRTUSWAP - 2ND AUDIT



UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER VIRTUSWAP - 2ND AUDIT



CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Virtuswap - 2nd audit Security Assessment CertiK Assessed on May 27th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

