
VirtuSwap
Security Analysis

by Pessimistic

This report is public

July 25, 2022

Abstract ...2

Disclaimer ...2

Summary ..2

General recommendations ...2

Project overview ...3

Project description ..3

Codebase update #1 ...3

Procedure ...4

Manual analysis ..5

Critical issues ..5

C01. Incorrect LP token quantity calculation (fixed) ..5

Medium severity issues ...6

M01. Discrepancy with the documentation (fixed) ..6

M02. No tests for the project (fixed) ..6

M03. Incorrect LP token calculation (fixed) ...6

M04. Incorrect calculation of the required amount for a given token (fixed)6

M05. Incorrect parameters order (fixed) ..7

M06. Overpowered role (new) ...7

Low severity issues ...8

L01. Unnecessary SafeMath usage (fixed) ...8

L02. Dependency management issues (fixed) ..8

L03. Code quality - constants (fixed) ...8

L04. Code quality - value (fixed) ..8

L05. Code quality - calculations (fixed) ...9

L06. Code quality - import (fixed) ..9

L07. Code quality - redundant function (fixed) ..9

L08. Code quality - redundant contract (fixed) ..9

L09. Code quality - redundant check (fixed) ...9

L10. Code quality - external (fixed) ...9

L11. Code quality - dead code (fixed) ..10

Notes ...10

N01. Design drawback ..10

Blockchain Security Analysis by Pessimistic 1

Abstract
In this report, we consider the security of smart contracts of the VirtuSwap project. Our task
is to find and describe security issues in the smart contracts of the platform.

Disclaimer
The audit does not give any warranties on the security of the code. A single audit cannot be
considered enough. We always recommend proceeding with several independent audits and
a public bug bounty program to ensure the security of smart contracts. Besides, a security
audit is not investment advice.

Summary
In this report, we considered the security of VirtuSwap smart contracts. We performed our
audit according to the procedure described below.

The audit showed one critical issue: Incorrect LP token quantity calculation. The audit also
revealed several issues of medium severity: Discrepancy with the documentation,
No tests for the project, Incorrect LP token calculation,
Incorrect calculation of the required amount for a given token, and
Incorrect parameters order. Moreover, several low-severity issues were found.

After the initial audit, the codebase was updated.
In this update, the developers fixed the Incorrect LP token quantity calculation issue of critical
severity and all issues of medium severity, including Discrepancy with the documentation,
No tests for the project, Incorrect LP token calculation,
Incorrect calculation of the required amount for a given token, Incorrect parameters order ,
and all issues of low severity. However, we discovered one more issue Overpowered role
and added the comment from the developers. Also, all tests passed and the code coverage
was measured.

The code quality is good. The security of UniswapV2 in this project is preserved.

General recommendations
We recommend improving NatSpec coverage. We also recommend implementing CI to run
tests, and analyze code with linters and security tools.

Blockchain Security Analysis by Pessimistic 2

https://virtuswap.io/
https://virtuswap.io/
https://github.com/Uniswap

Project overview

Project description
For the audit, we were provided with VirtuSwap project on a private GitHub repository,
commit 3b9ad51f90e117599a73005192ecdd6ca02cd8af.

The scope of the audit includes everything.

The documentation for the project includes a Notion file.

sha1sum - df199024dcfd4da9af0ea11986339255c1901b99.

The total LOC of audited sources is 944.

Codebase update #1
After the initial audit, we were provided with commit
7f30082ad657c70d8725b562624cf5354222708.

In this update, the developers fixed all issues and added new functionality. However, in the
updated codebase, we discovered the issue of medium severity. Also, the developers added
tests and all 39 tests passed. The code coverage was measured and increased 91.53%.

Blockchain Security Analysis by Pessimistic 3

https://github.com/Virtuswap/v1-core
https://github.com/Virtuswap/v1-core/tree/3b9ad51f90e117599a73005192ecdd6ca02cd8af
https://lowly-licorice-1c4.notion.site/Project-description-Pessimistic-2c0edbf40d8f4ee79480147771818e3c
https://github.com/Virtuswap/v1-core/tree/7f30082ad657c70d8725b562624cf5354222708

Procedure
In our audit, we consider the following crucial features of the code:

1. Whether the code is secure.

2. Whether the code corresponds to the documentation (including whitepaper).

3. Whether the code meets best practices.

We perform our audit according to the following procedure:

Automated analysis

We scan the project’s codebase with the automated tool: Slither.

We manually verify (reject or confirm) all the issues found by the tool.

Manual audit

We manually analyze the codebase for security vulnerabilities.

We assess the overall project structure and quality.

Report

We reflect all the gathered information in the report.

Inter alia, we check:

Whether the code implements all the important checks that UniswapV2 has in the
corresponding contracts.

The logic of LP tokens accrual, including the case when totalSupply = 0.

Whether the code and the documentation are consistent.

Standard Solidity issues in the codebase.

The new logic that is associated with virtual pools.

Blockchain Security Analysis by Pessimistic 4

https://github.com/crytic/slither
https://github.com/Uniswap

Manual analysis
The contracts were completely manually analyzed, their logic was checked. Besides, the
results of the automated analysis were manually verified. All the confirmed issues are
described below.

Critical issues
Critical issues seriously endanger project security. They can lead to loss of funds or other
catastrophic consequences. The contracts should not be deployed before these issues are
fixed.

C01. Incorrect LP token quantity calculation (fixed)
While calling directly (not through vRouter) the mint function of the vPair contract, the
quantity of LP tokens provided for liquidity is calculated using parameters _reserve0 and
amount0 only for one token in pair. This may lead to an unexpectedly large amount of
withdrawal of the other token in pair.

Consider checking how this vulnerability is prevented in the UniswapV2Pair contract where
the minimum quantity of LP tokens in pair is taken.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 5

https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol#:~:text=liquidity%20%3D%20Math.min(amount0.mul(_totalSupply)%20/%20_reserve0%2C%20amount1.mul(_totalSupply)%20/%20_reserve1)%3B

Medium severity issues
Medium issues can influence project operation in the current implementation. Bugs, loss of
potential income, and other non-critical failures fall into this category, as well as potential
problems related to incorrect system management. We highly recommend addressing them.

M01. Discrepancy with the documentation (fixed)
In the provided documentation, flashswap functionality is mentioned. However, the stated
functionality is not working due to the current balance check before the external call
vSwapcallee in the swapNative function of the vPair contract.

Consider moving the check of the current balance after the external call.

The issue has been fixed and is not present in the latest version of the code.

M02. No tests for the project (fixed)
The project has no tests at all. We always note the availability of tests as well as code
coverage. We highly recommend covering the code with tests and making sure that all tests
pass and the code coverage is sufficient.

The issue has been fixed and is not present in the latest version of the code.

M03. Incorrect LP token calculation (fixed)
The intention of the reserveRatio variable is unclear. In the current implementation, the
reserveRatio variable equals 0, and the amount of LP tokens is calculated regarding only
the tokens of the pair. The reserve tokens are not included in the calculation. However, when
LP tokens are burnt, the reserve tokens are included in the calculations, which means that
they will be withdrawn from the pair.

Consider adding comments about this formula.

The issue has been fixed and is not present in the latest version of the code.

M04. Incorrect calculation of the required amount for a given token (fixed)
Functions quoteInput and quoteOutput of vSwapMath contract do not follow the rule
quoteInput(quoteOutput(x)) = x as it is done in UniswapV2Library. Also, the fee is
calculated incorrectly at lines 75 and 89. This leads to the incorrect operation of swaps and
liquidity provision.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 6

https://lowly-licorice-1c4.notion.site/Project-description-Pessimistic-2c0edbf40d8f4ee79480147771818e3c
https://github.com/Uniswap/v2-periphery/blob/master/contracts/libraries/UniswapV2Library.sol#L43

M05. Incorrect parameters order (fixed)
Parameters of the calculateLPTokensAmount function are passed in the wrong order in
function mint of the vPair contract. The correct parameters order is:

1. amount0;

2. totalSupply;

3. _reserve0;

4. reserveRatio;

The calculateLPTokensAmount function has been removed and this issue is not present
in the latest version of the code.

M06. Overpowered role (new)
In the vPairFactory and in the vPair contracts, admin can set and change:

1. the swap fees;

2. the max reserve ratio;

3. the max number of whitelisted tokens of a pair;

4. set whitelisted tokens;

5. change the address of the factory.

In the vRouter contract, owner can change the address of the factory.

If the admin's private keys become compromised, this could lead to the admin being able to
front-run a transaction of the pair creation and set the parameters of a pair. Also, the admin
can front-run the swap functions.

We recommend designing contracts in a trustless manner or implementing proper key
management, e.g., setting up a multisig.

Comment from the developers: In the first version, admin keys to control the pool parameters
will be held in a multisig wallet owned by Virtuswap foundation. The next version will
introduce different features to move the protocol control to governance / DAO as described in
our tokenomics.

Blockchain Security Analysis by Pessimistic 7

Low severity issues
Low severity issues do not directly affect project operation. However, they might lead to
various problems in future versions of the code. We recommend fixing them or explaining
why the team has chosen a particular option.

L01. Unnecessary SafeMath usage (fixed)
Math operations revert in cases of over- and underflows in Solidity starting from version
0.8.0. We recommend removing the SafeMath library from the vSwapERC20 contract to
optimize gas consumption and simplify the logic of the project.

The issue has been fixed and is not present in the latest version of the code.

L02. Dependency management issues (fixed)
We have spotted several issues regarding the project setup:

Optimization is not turned on in truffle-config.js. This may lead to an unpredictable
compilation of the project.

package-lock.json is in .gitignore. This file is of great importance as it helps to set up
the project correctly for the audit process.

Project dependencies are in the dependencies rather than the devDependencies
section of the package.json.

OpenZeppelin libraries Math, SafeERC20, and SafeMath are copied into the project
repository but should be managed as dependencies.

The issues have been fixed and are not present in the latest version of the code.

L03. Code quality - constants (fixed)
Consider declaring literals as constants where possible in order to increase code
readability.

The issues have been fixed and are not present in the latest version of the code.

L04. Code quality - value (fixed)
Consider assigning variables to 1e18 instead of ether when working with tokens in order to
increase code readability.

The issues have been fixed and are not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 8

L05. Code quality - calculations (fixed)
Performing division operations before multiplication can result in a loss of precision. Consider
dividing in the last step in these functions of the vSwapMath contract:

calculateLPTokensAmount;

calculateReserveRatio;

And in the burn function of the vPair contract.

The issues have been fixed and are not present in the latest version of the code.

L06. Code quality - import (fixed)
Consider removing one of the imports of the IvPairFactory file as it is imported twice in
the vRouter contract.

The issue has been fixed and is not present in the latest version of the code.

L07. Code quality - redundant function (fixed)
Consider removing the redundant constructor function of the vSwapERC20 contract as it
does not contain any logic inside.

The issue has been fixed and is not present in the latest version of the code.

L08. Code quality - redundant contract (fixed)
Consider removing currently unused contracts from the project in order to increase code
readability.

The issues have been fixed and are not present in the latest version of the code.

L09. Code quality - redundant check (fixed)
The check with if statement in transferFrom function of the vSwapERC20 contract is
redundant as the operation with zero allowance will revert in the next substitution.

The issue has been fixed and is not present in the latest version of the code.

L10. Code quality - external (fixed)
Consider declaring functions as external instead of public when possible to improve
code readability.

The issues have been fixed and are not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 9

L11. Code quality - dead code (fixed)
There are a lot of dead code and redundant commented functions all over the code. Consider
removing them in order to increase code readability.

The issues have been fixed and are not present in the latest version of the code.

Notes

N01. Design drawback
Consider using create2 instead of create. By using create, the project lacks the ability
to pre-calculate the pair address by the set of tokens. Instead, it calls the factory contract to
get the pair address. By using create2, the project gains this ability. Avoiding an external
call is crucial in terms of gas-saving.

Comment from the developers: Calculating deterministic addresses with create2 is planned
for the next release.

Blockchain Security Analysis by Pessimistic 10

This analysis was performed by Pessimistic:

Evgeny Marchenko, Senior Security Engineer
Daria Korepanova, Security Engineer
Nikita Kirillov, Junior Security Engineer
Irina Vikhareva, Project Manager
Alexander Seleznev, Founder

July 25, 2022

Blockchain Security Analysis by Pessimistic 11

